-
Mesoscale eddy is a marine phenomenon occurring frequently in deep ocean, and it will disturb the sound speed in the upper water layer. As a result, the mesoscale eddies will influence the propagation of wing-generated noise and cause the noise field to vary. In this paper, we investigate the effects of mesoscale eddies on the vertical spatial characteristics (including the noise vertical directionality and the noise vertical correlation) of wind-generated noise at different depths of its horizontal center of the eddy. In the study, the Gaussian eddy model is used to describe the sound speed fluctuation, and the ray and parabolic equation theories are used to describe the noise propagating in the near field and far field, respectively. Simulations indicate as follows. 1) At the depth of the eddy center, a clod-core eddy causes both the width of the horizontal notch and the noise vertical correlation to decrease, while the effect of a warm-core eddy is contrary to that of the cold-core eddy. 2) At the depth far from the eddy center, the effect of eddies is reduced, a cold-core and a warm-core eddy only lead the peak at the down edge of the horizontal notch in the noise directionality to rise and fall, respectively, and do not influence the noise vertical correlation. 3) The effect of an eddy becomes severe as its absolute strength becomes higher. The ray reversion method based on the principle of reciprocity is used to explain the physical reason behind the above phenomena. By the method the rays are launched from the noise receiving point and the polar angle and the strength of the noise arriving reversely along the ray paths are analyzed. It is shown that the change of the polar angle and the strength of the noise arriving reversely along the surface reflected ray paths in the presence of eddies are the main cause for changing the noise vertical spatial characteristics. Furthermore, simulations show that the analyses and conclusions in the study are still approximately valid when the receiving point deviates from the eddy center but the horizontal distance between them is short.
-
Keywords:
- eddy /
- wind-generated noise /
- vertical directionality /
- vertical correlation /
- ray model /
- parabolic equation model
[1] Carey W M, Evans R B 2011 Ocean Ambient Noise (New York: Springer) pp62−68
[2] Wenz G M 1962 J. Acoust. Soc. Am. 34 1936Google Scholar
[3] Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541Google Scholar
[4] 蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar
Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar
[5] Yoo K, Yang T C 1998 J. Acoust. Soc. Am. 104 3326Google Scholar
[6] Harrison C H 2018 J. Acoust. Soc. Am. 143 1689Google Scholar
[7] Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938Google Scholar
[8] Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar
[9] Roux P, Kuperman W A, Group N 2004 J. Acoust. Soc. Am. 116 1995Google Scholar
[10] Sabra K G, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 117 164Google Scholar
[11] Buckingham M J 2011 J. Acoust. Soc. Am. 129 3562Google Scholar
[12] Etter P C 2018 Underwater Acoustic Modeling and Simulation (3rd Ed.) (New York: CRC Press) pp214−231, 188−190
[13] Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar
[14] Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar
[15] Liggett W S, Jacobson M J 1965 J. Acoust. Soc. Am. 38 303Google Scholar
[16] Harrison C H 1997 Appl. Acoust. 51 289Google Scholar
[17] Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J. Oceanic Eng. 15 324Google Scholar
[18] Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar
[19] Hamson R M 1985 J. Acoust. Soc. Am. 78 1702Google Scholar
[20] Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar
[21] Harison C H 1997 J. Acoust. Soc. Am. 102 2655Google Scholar
[22] Buckingham M J 2013 J. Acoust. Soc. Am. 134 950Google Scholar
[23] 刘伯胜, 雷家煜 2010 水声学原理第二版 (哈尔滨: 哈尔滨工程大学出版社) 第23−30页
Liu B S, Lei J Y 2010 Principle of Underwater Acoustics 2nd (Harbin: Harbin Engineering University Press) pp23−30 (in Chinese)
[24] Urick R J 1975 J. Acoust. Soc. Am. 5 8
[25] Rouseff D, Tang D J 2006 J. Acoust. Soc. Am. 120 1284Google Scholar
[26] 江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724
Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724
[27] 汤博 2019 博士学位论文 (北京: 中国科学院大学)
Tang B 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy Sciences) (in Chinese)
[28] Weinberg N L, Clark J G 1980 J. Acoust. Soc. Am. 68 703Google Scholar
[29] Baer R N 1980 J. Acoust. Soc. Am. 67 1180Google Scholar
[30] Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar
[31] Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar
[32] Jian Y J, Zhang J, Liu S Q, Wang Y F 2009 Appl. Acoust. 70 432Google Scholar
[33] Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar
[34] 李佳迅, 张韧, 陈奕德, 金宝刚 2011 海洋通报 30 37Google Scholar
Li J X, Zhang R, Chen Y D, Jin B G 2011 Marin. Sci. Bull. 30 37Google Scholar
[35] Xiao Y, Li Z L, Li J, Liu J Q, Sabra K G 2019 Chin. Phys. B 28 054301Google Scholar
[36] Chen C, Jin T, Zhou Z Q 2019 Appl. Acoust. 150 190Google Scholar
[37] Chen C, Gao Y, Yan F G, Zhou Z Q 2019 Acoust. Aust. 47 185Google Scholar
[38] 康颖 2014 硕士学位论文 (青岛: 中国海洋大学)
Kang Y 2004 M.S. Thesis (Qingdao: Ocean University of China) (in Chinese)
[39] Jesen F B, Kuperman W A, Porter M B, Schmidt H Computational Ocean Acoustics 2nd (Berlin: Springer Science Business Media) pp155−230, 457−527
[40] Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar
[41] Poter M B https://oalib-acoustics.org/Rays/HLS-2010-1.pdf [2020-4-17]
[42] Collins M D https://oalib-acoustics.org/PE/RAM/ram.pdf [2020-4-17]
[43] Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar
[44] Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar
[45] Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar
[46] Poter M B https://oalib-acoustics.org/AcousticsToolbox/Kraken.pdf [2020-4-17]
[47] 周建波 2018 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Zhou J B 2018 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
[48] Brekhovskikh L M, Lysanov Y P, Beyer R T 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer) pp50−52
-
图 4 涡旋强度
$ D_{\rm c} $ 不同值时的声速分布 (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-20 $ ; (c)$ D_{\rm c}=-40 $ ; (d)$ D_{\rm c}=20 $ ; (e)$ D_{\rm c}=40 $ Figure 4. Sound speed distribution with different
$ D_{\rm c} $ : (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-20 $ ; (c)$ D_{\rm c}=-40 $ ; (d)$ D_{\rm c}=20 $ ; (e)$ D_{\rm c}=40 $ 图 5 涡旋强度
$ D_{\rm c} $ 取不同值时, 不同深度上的噪声垂直方向性 (图中黑色虚线指示了水平凹槽下边缘峰值) (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-20 $ ; (c)$ D_{\rm c}=-40 $ ; (d)$ D_{\rm c}=20 $ ; (e)$ D_{\rm c}=40 $ Figure 5. Noise vertical directionalities at different depths with different
$ D_{\rm c} $ (black dashed line in each subfigure indicates the location of the peak at the downward edge of the horizontal notch): (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-20 $ ; (c)$ D_{\rm c}=-40 $ ; (d)$ D_{\rm c}=20 $ ; (e)$ D_{\rm c}=40 $ 图 7 800 m深度上, 涡旋强度
$ D_{\rm c} $ 取不同值时的噪声垂直相关函数 (a)$ {\rm Re}\left[ \varGamma(d) \right] $ ; (b)$ {\rm{Im}}\left[ \varGamma(d) \right] $ Figure 7. Noise vertical correlation functions with different
$ D_{\rm c} $ at 800 m depth: (a)$ {\rm Re}\left[ \varGamma(d) \right] $ ; (b)$ {\rm{Im}}\left[ \varGamma(d) \right] $ 图 8 2000 m深度上, 涡旋强度
$ D_{\rm c} $ 取不同值时的噪声垂直相关函数 (a)$ {\rm Re}\left[ \varGamma(d) \right] $ ; (b)$ {\rm{Im}}\left[ \varGamma(d) \right] $ Figure 8. Noise vertical correlation functions with different
$ D_{\rm c} $ at 2000 m depth: (a)$ {\rm Re}\left[ \varGamma(d) \right] $ ; (b)$ {\rm{Im}}\left[ \varGamma(d) \right] $ 图 9
$ D_{\rm c} $ 取0,$ -40 $ 和40时, 以(0, 800 m)为发射点, 出射俯仰角为$95.5 ^\circ — 110.5 ^\circ$ 的声线轨迹图(图中绿色虚线、红色实线和灰色点线分别表示NR, SR和SRBR声线) (a)$ D_{\rm c}= $ 0; (b)$ D_{\rm c}=-40 $ ; (c)$ D_{\rm c}=40 $ Figure 9. Traces of the rays launching from the (0, 800 m) point with the launching polar angles varying within
$95.5 ^\circ - 110.5 ^\circ$ under the conditions where$ D_{\rm c} $ equals to 0,$ -40 $ , and 40 (green dashed lines, red solid lines and gray dotted lines in each subfigure indicate the NR, SR, and SRBR rays, respectively): (a)$ D_{\rm c} \!=\! $ 0; (b)$ D_{\rm c}\!=\! -40 $ ; (c)$ D_{\rm c}\!=\! 40$ 图 10
$ D_{\rm c} $ 取0,$ -40 $ 和40时, 40—50 km不同$ {\rm d}r $ 范围内的噪声源产生的噪声场在800 m深度上的垂直方向性$ B_r(\theta) $ (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-40 $ ; (c)$ D_{\rm c}=40 $ Figure 10. Noise vertical noise directionalities
$ B_r(\theta) $ generated by noise sources within$ {\rm d}r $ at 800 m depth with r varying from 40 to 50 km under the conditions where$ D_{\rm c} $ equals to 0,$ -40 $ , and 40: (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-40 $ ; (c)$ D_{\rm c}=40 $ 图 11
$ D_{\rm c} $ 取0,$ -40 $ 和40时, 以(0, 2000 m)为发射点, 出射俯仰角为$95.5 ^\circ — 110.5 ^\circ$ 的声线轨迹图(图中绿色虚线、红色实线和灰色点线分别表示NR, SR和SRBR声线) (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-40 $ ; (c)$ D_{\rm c}=40 $ Figure 11. Traces of the rays launching from the (0, 2000 m) point with the launching polar angles varying within
$95.5 ^\circ - 110.5 ^\circ$ under the conditions where$ D_{\rm c} $ equals to 0,$ -40 $ , and 40 (green dashed lines, red solid lines and gray dotted lines in each subfigure indicate the NR, SR, and SRBR rays, respectively): (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-40 $ ; (c) Dc = 40图 12
$ D_{\rm c} $ 取0,$ -40 $ 和40时, 40—50 km不同$ {\rm d}r $ 范围内的噪声源产生的噪声场在2000 m深度上的垂直方向性$ B_r(\theta) $ (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-40 $ ; (c)$ D_{\rm c}=40 $ Figure 12. Noise vertical noise directionalities
$ B_r(\theta) $ generated by noise sources within$ {\rm d}r $ at 2000 m depth with r varying from 40 to 50 km under the conditions where$ D_{\rm c} $ equals to 0,$ -40 $ , and 40: (a)$ D_{\rm c}=0 $ ; (b)$ D_{\rm c}=-40 $ ; (c)$ D_{\rm c}=40 $ 图 15 使用Bellhop3D, 分别选择
${{N}} \times {\rm{2 D}}$ 和$ \rm 3 D $ 模式计算得到的$ O_{\rm R} $ 处800 m深度上的声源到噪声源深度(0.5 m)水平截面的传播损失 (a)${{N}} \times {\rm{2 D}}$ ; (b)${\rm{3 D}}$ Figure 15. Transmission loss from
$ O_{\rm R} $ 800 m depth to the noise sources depth (0.5 m) cross section computed by the Bellhop3D program in${{N}} \times {\rm{2D}}$ and 3D modes: (a) N × 2D; (b) 3D表 1
$ D_{\rm c} $ 取0,$ -40 $ 和40时, 以(0, 800 m)为发射点, 出射俯仰角大于$90 ^\circ$ 的声线中, SR声线的最小出射俯仰角$ \theta_{{\rm{SR}}, {\rm{min}}} $ 、最大出射俯仰角$\theta_{{\rm{SR}}, {\rm{max}}}$ 、中心出射俯仰角$\theta_{{\rm{SR}}, {\rm{c}}}$ 和出射俯仰角宽度$ \Delta \theta_{\rm{SR}} $ Table 1. Minimal lunching polar angle
$\theta_{{\rm{SR}}, {\rm{min}}}$ , maximal launching polar angle$\theta_{{\rm{SR}}, {\rm{max}}}$ , central launching polar angle$\theta_{{\rm{SR}}, {\rm{c}}}$ , and launching polar angle width$ \Delta \theta_{\rm{SR}} $ of the SR rays launching from the (0, 800 m) point with the launching polar angle being greater than$90 ^\circ$ under the conditions where$ D_{\rm c} $ equals to 0,$ -40 $ , and 40$ D_{\rm c} $ $\theta_{{\rm{SR} }, {\rm{min} }}$ $\theta_{{\rm{SR} }, {\rm{max} }}$ $\theta_{{\rm{SR} }, {\rm{c} }}$ $ \Delta \theta_{\rm{SR}} $ 0 104.3° 105.1° 104.70° 0.8° –40 109.3° 110.0° 109.65° 0.7° 40 96.3° 97.7° 97.00° 1.4° 表 2
$ D_{\rm c} $ 取0,$ -40 $ 和40时, 以(0, 2000 m)为发射点, 出射俯仰角大于$90 ^\circ$ 的声线中, SR声线的最小出射俯仰角$\theta_{{\rm{SR}}, {\rm{min}}}$ 、最大出射俯仰角$\theta_{{\rm{SR}}, {\rm{max}}}$ 、中心出射俯仰角$\theta_{{\rm{SR}}, {\rm{c}}}$ 和出射俯仰角宽度$ \Delta \theta_{\rm{SR}} $ Table 2. Minimal launching polar angle
$\theta_{{\rm{SR}}, {\rm{min}}}$ , maximal launching polar angle$\theta_{{\rm{SR}}, {\rm{max}}}$ , central launching polar angle$\theta_{{\rm{SR}}, {\rm{c}}}$ , and launching polar angle width$ \Delta \theta_{\rm{SR}} $ of the SR rays launching from the (0, 2000 m) point with the launching polar angle being greater than$90 ^\circ$ under the conditions where$ D_{\rm c} $ equals to 0,$ -40 $ , and 40$ D_{\rm c} $ $\theta_{{\rm{SR} }, {\rm{min} }}$ $\theta_{{\rm{SR} }, {\rm{max} }}$ $\theta_{{\rm{SR} }, {\rm{c} }}$ $ \Delta \theta_{\rm{SR}} $ 0 102.3° 103.4° 102.85° 1.1° –40 102.0° 103.4° 102.70° 1.4° 40 102.7° 103.4° 103.05° 0.7° -
[1] Carey W M, Evans R B 2011 Ocean Ambient Noise (New York: Springer) pp62−68
[2] Wenz G M 1962 J. Acoust. Soc. Am. 34 1936Google Scholar
[3] Yang T C, Yoo K 1997 J. Acoust. Soc. Am. 101 2541Google Scholar
[4] 蒋光禹, 孙超, 刘雄厚, 谢磊 2019 物理学报 68 024302Google Scholar
Jiang G Y, Sun C, Xie L, Liu X H 2019 Acta Phys. Sin. 68 024302Google Scholar
[5] Yoo K, Yang T C 1998 J. Acoust. Soc. Am. 104 3326Google Scholar
[6] Harrison C H 2018 J. Acoust. Soc. Am. 143 1689Google Scholar
[7] Buckingham M J, Jones S A 1987 J. Acoust. Soc. Am. 81 938Google Scholar
[8] Harrison C H, Simons D G 2002 J. Acoust. Soc. Am. 112 1377Google Scholar
[9] Roux P, Kuperman W A, Group N 2004 J. Acoust. Soc. Am. 116 1995Google Scholar
[10] Sabra K G, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 117 164Google Scholar
[11] Buckingham M J 2011 J. Acoust. Soc. Am. 129 3562Google Scholar
[12] Etter P C 2018 Underwater Acoustic Modeling and Simulation (3rd Ed.) (New York: CRC Press) pp214−231, 188−190
[13] Cron B F, Sherman C H 1962 J. Acoust. Soc. Am. 34 1732Google Scholar
[14] Kuperman W A, Ingentio F 1980 J. Acoust. Soc. Am. 67 1988Google Scholar
[15] Liggett W S, Jacobson M J 1965 J. Acoust. Soc. Am. 38 303Google Scholar
[16] Harrison C H 1997 Appl. Acoust. 51 289Google Scholar
[17] Carey W M, Evans R B, Davis J A, Botseas G 1990 IEEE J. Oceanic Eng. 15 324Google Scholar
[18] Perkins J S, Kuperman W A, Ingentio F, Fialkowski L T 1993 J. Acoust. Soc. Am. 93 739Google Scholar
[19] Hamson R M 1985 J. Acoust. Soc. Am. 78 1702Google Scholar
[20] Deane G B, Buckingham M J, Tindle C T 1997 J. Acoust. Soc. Am. 102 3413Google Scholar
[21] Harison C H 1997 J. Acoust. Soc. Am. 102 2655Google Scholar
[22] Buckingham M J 2013 J. Acoust. Soc. Am. 134 950Google Scholar
[23] 刘伯胜, 雷家煜 2010 水声学原理第二版 (哈尔滨: 哈尔滨工程大学出版社) 第23−30页
Liu B S, Lei J Y 2010 Principle of Underwater Acoustics 2nd (Harbin: Harbin Engineering University Press) pp23−30 (in Chinese)
[24] Urick R J 1975 J. Acoust. Soc. Am. 5 8
[25] Rouseff D, Tang D J 2006 J. Acoust. Soc. Am. 120 1284Google Scholar
[26] 江鹏飞, 林建恒, 马力, 蒋国健 2013 声学学报 38 724
Jiang P F, Lin J H, Ma L, Jiang G J 2013 Acta Acustica 38 724
[27] 汤博 2019 博士学位论文 (北京: 中国科学院大学)
Tang B 2019 Ph. D. Dissertation (Beijing: University of Chinese Academy Sciences) (in Chinese)
[28] Weinberg N L, Clark J G 1980 J. Acoust. Soc. Am. 68 703Google Scholar
[29] Baer R N 1980 J. Acoust. Soc. Am. 67 1180Google Scholar
[30] Lawrence M W 1983 J. Acoust. Soc. Am. 73 474Google Scholar
[31] Henrick R F, Burkom H S 1983 J. Acoust. Soc. Am. 73 173Google Scholar
[32] Jian Y J, Zhang J, Liu S Q, Wang Y F 2009 Appl. Acoust. 70 432Google Scholar
[33] Heaney K D, Campbell R L 2016 J. Acoust. Soc. Am. 139 918Google Scholar
[34] 李佳迅, 张韧, 陈奕德, 金宝刚 2011 海洋通报 30 37Google Scholar
Li J X, Zhang R, Chen Y D, Jin B G 2011 Marin. Sci. Bull. 30 37Google Scholar
[35] Xiao Y, Li Z L, Li J, Liu J Q, Sabra K G 2019 Chin. Phys. B 28 054301Google Scholar
[36] Chen C, Jin T, Zhou Z Q 2019 Appl. Acoust. 150 190Google Scholar
[37] Chen C, Gao Y, Yan F G, Zhou Z Q 2019 Acoust. Aust. 47 185Google Scholar
[38] 康颖 2014 硕士学位论文 (青岛: 中国海洋大学)
Kang Y 2004 M.S. Thesis (Qingdao: Ocean University of China) (in Chinese)
[39] Jesen F B, Kuperman W A, Porter M B, Schmidt H Computational Ocean Acoustics 2nd (Berlin: Springer Science Business Media) pp155−230, 457−527
[40] Munk W H 1974 J. Acoust. Soc. Am. 55 220Google Scholar
[41] Poter M B https://oalib-acoustics.org/Rays/HLS-2010-1.pdf [2020-4-17]
[42] Collins M D https://oalib-acoustics.org/PE/RAM/ram.pdf [2020-4-17]
[43] Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar
[44] Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar
[45] Cox H 1973 J. Acoust. Soc. Am. 54 1289Google Scholar
[46] Poter M B https://oalib-acoustics.org/AcousticsToolbox/Kraken.pdf [2020-4-17]
[47] 周建波 2018 博士学位论文 (哈尔滨: 哈尔滨工程大学)
Zhou J B 2018 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)
[48] Brekhovskikh L M, Lysanov Y P, Beyer R T 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer) pp50−52
Catalog
Metrics
- Abstract views: 6130
- PDF Downloads: 81
- Cited By: 0