Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density distribution characteristics of fluid inside vortex in supersonic mixing layer

Guo Guang-Ming Zhu Lin Xing Bo-Yang

Citation:

Density distribution characteristics of fluid inside vortex in supersonic mixing layer

Guo Guang-Ming, Zhu Lin, Xing Bo-Yang
PDF
HTML
Get Citation
  • Based on the large eddy simulation, the boundary of a vortex and the coordinates of its core are both obtained by using the Lagrangian coherent structure method and the location extraction method of the vortex core, and thus the method of representing fluid density inside a vortex is proposed. The density distribution characteristics of fluid inside the vortex in a supersonic mixing layer are revealed by analyzing the changes in density of the fluid inside a vortex under different conditions (e.g. spatial size of the vortex, compressibility of the supersonic mixing layer, and merging process of the two paired vortices) as follows. For the weak and medium compressive supersonic mixing layers, the density distribution of the fluid inside a vortex is symmetrical about both the flow direction (x-axis) and longitudinal direction (y-axis), the fluid density at the vortex core is lowest while it is highest at the vortex boundary, and fluid density increases monotonically and nearly uniformly along the ray connecting the vortex core and the vortex boundary. For the strongly compressible supersonic mixing layer, however, the density distribution of the fluid inside the vortex is no longer symmetrical about any flow direction and moreover it shows the fluctuation characteristics of fluid density distribution. With the increase of the spatial size of a vortex and the compressibility of a supersonic mixing layer, the fluid density at the vortex core decreases (the maximum reduction is about 31%–56%) while it changes about 6%–27% at the vortex boundary. In the merging process of two adjacent vortices, the variation of fluid density in the two vortices is slight, which shows that the merging process is probably of a peer-to-peer combination of fluid inside the two adjacent vortices. Considering the practical engineering applications, the density distribution characteristics of fluid inside the vortex in the supersonic mixing layer with different inflow densities of its upper and lower layers are also investigated, and the results show that the density distribution of the fluid inside a vortex is symmetrical about the longitudinal direction (y-axis), but not the flow direction (x-axis). It is also found that the density distribution near the vortex boundary is determined by the inflow density there, so a good strategy of reducing the aero-optical effects caused by the supersonic mixing layer is that the difference in density between the upper and lower layers should be as small as possible.
      Corresponding author: Guo Guang-Ming, guoming20071028@163.com
    [1]

    Niu Q L, Gao P, Yuan Z C, He Z H, Dong S K 2019 Infrared Phys. Technol. 97 74Google Scholar

    [2]

    Jumper E J, Gordeyev S 2017 Annu.Rev.Fluid Mech. 49 419Google Scholar

    [3]

    殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第2页

    Yin X L 2003 Principle of Aero-Optics (Beijing: China Astronautics Press) p2 (in Chinese)

    [4]

    Rogers M M, Moser R D 1992 J.Fluid Mech. 243 183Google Scholar

    [5]

    Mungal M G, Hermanson J C, Dimotakis P E 1985 AIAA J. 23 1418Google Scholar

    [6]

    Brown G L, Roshko A 1974 J.Fluid Mech. 64 775Google Scholar

    [7]

    朱杨柱, 易仕和, 孔小平, 何霖 2015 物理学报 64 064701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701Google Scholar

    [8]

    易仕和, 陈植, 朱杨柱, 何霖, 武宇 2015 航空学报 1 98

    Yi S H, Chen Z, Zhu Y Z, He L, Wu Y 2015 Acta Aeronaut. Astronaut. Sin. 1 98

    [9]

    沈清, 袁湘江, 王强, 杨武兵, 关发明, 纪锋 2012 力学进展 42 252

    Shen Q, Yuan X J, Wang Q, Yang W B, Guan F M, Ji F 2012 Adv. Mech. 42 252

    [10]

    Wang B, Wei W, Zhang Y L, Zhang H Q, Xue S Y 2015 Comput. Fluids 123 32Google Scholar

    [11]

    Zhang D D, Tan J G, Lv L 2015 Acta Astronaut. 117 440Google Scholar

    [12]

    郭广明, 刘洪, 张斌, 张庆兵 2017 物理学报 66 084701Google Scholar

    Guo G M, Liu H, Zhang B, Zhang Q B 2017 Acta Phys. Sin. 66 084701Google Scholar

    [13]

    张冬冬, 谭建国, 姚霄 2020 物理学报 69 024701Google Scholar

    Zhang D D, Tan J G, Yao X 2020 Acta Phys. Sin. 69 024701Google Scholar

    [14]

    Catrakis H J, Aguirre R C 2004 AIAA J. 42 1973Google Scholar

    [15]

    Dimotaksi P, Catrakis H, Fourguette D 2001 J. Fluid Mech. 433 105Google Scholar

    [16]

    Chew L, Christiansen W 1993 AIAA J. 31 2290Google Scholar

    [17]

    甘才俊, 李烺, 马汉东, 熊红亮 2014 物理学报 63 054703Google Scholar

    Gan C J, Li L, Ma H D, Xiong H L 2014 Acta Phys. Sin. 63 054703Google Scholar

    [18]

    Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 2708Google Scholar

    [19]

    Visbal M R, Rizzeta D P 2008 AIAA Paper 2008-1074

    [20]

    Rennie R M, Duffin D A, Jumper E J 2008 AIAA J. 46 2787Google Scholar

    [21]

    丁浩林, 易仕和, 赵鑫海, 易君如, 葛勇 2018 气体物理 6 26

    Ding H L, Yi S H, Zhao X H, Yi J R, Ge Y 2018 Phys.Gases 6 26

    [22]

    Guo G M, Luo Q 2019 Opt.Commun. 452 48Google Scholar

    [23]

    郭广明, 刘洪, 张斌, 张忠阳, 张庆兵 2016 物理学报 65 074702Google Scholar

    Guo G M, Liu H, Zhang B, Zhang Z Y, Zhang Q B 2016 Acta Phys. Sin. 65 074702Google Scholar

    [24]

    郑忠华, 范周琴, 王子昂, 余彬, 张斌 2019 航空学报 41 123295Google Scholar

    Zheng Z H, Fan Z Q, Wang Z A, Yu B, Zhang B 2019 Acta Aeronaut. Astronaut. Sin. 41 123295Google Scholar

    [25]

    秦苏洋 2016 硕士学位论文 (上海: 上海交通大学)

    Qin S Y 2016 M S. Thesis (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [26]

    Papamoschou D, Bunyajitradulya A 1997 Phys. Fluids 3 756

  • 图 1  (a)红外制导飞行器的气动光学效应; (b)涡结构引起光束波前畸变的示意图

    Figure 1.  (a) Schematic of aero-optic effects of an infrared guidance vehicle; (b) wavefront distortion caused by a vortex.

    图 2  超声速混合层的涡量等值面

    Figure 2.  The vorticity contour of a supersonic mixing layer simulated by LES.

    图 3  涡边界椭圆模型的建立过程示意图 (a)两个涡结构; (b) LCS; (c)涡边界的椭圆模型

    Figure 3.  Process of establishing an elliptic model for the vortex boundary: (a) Two vortices; (b) LCS; (c) elliptic model of vortex boundary

    图 4  计算涡核位置坐标的原理图

    Figure 4.  Schematic of calculating position coordinates of a vortex core.

    图 5  基于涡边界和涡核位置的涡结构内部流体密度分布表示方法

    Figure 5.  Method of representing fluid density distribution inside a vortex based on its boundary and core location.

    图 6  (a)对流马赫数0.5的超声速混合层; (b)涡结构 A; (c)涡结构B; (d)涡结构C

    Figure 6.  (a)The supersonic mixing layer with Mc = 0.5; (b) Vortex A; (c) Vortex B; (d) Vortex C.

    图 7  不同尺寸涡结构内部流体的密度分布曲线 (a) Vortex A内部流体的密度随流向(x)距离变化的曲线图; (b) Vortex A内部流体密度随纵向(y)距离变化的曲线图; (c) Vortex B内部流体密度随流向(x)距离变化的曲线图; (d) Vortex B内部流体密度随纵向(y)距离变化的曲线图; (e) Vortex C内部流体密度随流向(x)距离变化的曲线图; (f) Vortex C内部流体密度随纵向(y)距离变化的曲线图

    Figure 7.  Density distribution of fluid inside three vortices: (a) Density distribution of fluid inside Vortex A along the flow direction (x-axis); (b) density distribution of fluid inside Vortex A along the longitudinal direction (y-axis); (c) density distribution of fluid inside Vortex B along the flow direction (x-axis); (d) density distribution of fluid inside Vortex B along the longitudinal direction (y-axis); (e) density distribution of fluid inside Vortex C along the flow direction (x-axis); (f) density distribution of fluid inside Vortex C along the longitudinal direction (y-axis).

    图 8  不同压缩性的超声速混合层

    Figure 8.  Supersonic mixing layers with different compressibilities

    图 9  不同压缩性流场中涡结构内部流体的密度分布曲线

    Figure 9.  Density distribution of fluid inside two vortices in the supersonic mixing layers with different compressibilities.

    图 10  (a)弱压缩性的超声速混合层, Mc = 0.3; (b)其流场中相邻两个涡结构的融合过程

    Figure 10.  (a) Supersonic mixing layer with Mc = 0.3; (b) two adjacent vortices during their merging process.

    图 11  涡a和涡b在长轴和短轴上的流体密度在涡融合过程中的变化曲线

    Figure 11.  Variation curve of the fluid density inside the vortex a and b during their merging process.

    图 12  特征点密度在涡融合过程中的变化

    Figure 12.  Variation of fluid density at several characteristic points during their merging process.

    图 13  (a)上下层来流密度不同的超声速混合层; (b)涡结构内部流体的密度沿纵向(y)分布曲线; (c)涡结构内部流体的密度沿流向(x)分布曲线

    Figure 13.  (a) The supersonic mixing layer with different inflow density of its upper and lower layers; (b) density distribution of fluid inside the vortex along the longitudinal direction (y-axis); (c) density distribution of fluid inside the vortex along the flow direction (x-axis).

    表 1  超声速混合层的入流参数

    Table 1.  Inflow parameters of three supersonic mixing layers.

    序号混合层入流速度/m·s–1T/KP/kPaρ/kg·m–3Mc
    上层流体(U1)下层流体(U2)
    1605.6403.728189.91.1070.3
    2740.2403.728189.91.1070.5
    31009.3403.728189.91.1070.9
    DownLoad: CSV

    表 2  不同空间尺寸涡结构的几何参数

    Table 2.  Geometric parameters of three vortices with different sizes.

    涡结构中心点长半轴a/m短半轴b/m扁率e
    xc/myc/m
    Vortex A0.1136–0.0017620.0033140.0027030.1844
    Vortex B0.18580.0016350.0062310.0038770.3778
    Vortex C0.28630.0032960.0106520.0050910.5221
    DownLoad: CSV

    表 3  不同压缩性超声速混合层涡结构的几何参数

    Table 3.  Geometric parameters of two vortices in the fields with different compressibilities.

    涡结构中心点长半轴a/m短半轴b/m扁率e
    xc/myc/m
    Vortex D (Mc = 0.3)0.1824–0.00082030.0048540.0031280.3556
    Vortex E (Mc = 0.9)0.2607(0.2589)–0.0012338(–0.0001429)0.0136730.0060510.5574
    DownLoad: CSV
  • [1]

    Niu Q L, Gao P, Yuan Z C, He Z H, Dong S K 2019 Infrared Phys. Technol. 97 74Google Scholar

    [2]

    Jumper E J, Gordeyev S 2017 Annu.Rev.Fluid Mech. 49 419Google Scholar

    [3]

    殷兴良 2003 气动光学原理 (北京: 中国宇航出版社) 第2页

    Yin X L 2003 Principle of Aero-Optics (Beijing: China Astronautics Press) p2 (in Chinese)

    [4]

    Rogers M M, Moser R D 1992 J.Fluid Mech. 243 183Google Scholar

    [5]

    Mungal M G, Hermanson J C, Dimotakis P E 1985 AIAA J. 23 1418Google Scholar

    [6]

    Brown G L, Roshko A 1974 J.Fluid Mech. 64 775Google Scholar

    [7]

    朱杨柱, 易仕和, 孔小平, 何霖 2015 物理学报 64 064701Google Scholar

    Zhu Y Z, Yi S H, Kong X P, He L 2015 Acta Phys. Sin. 64 064701Google Scholar

    [8]

    易仕和, 陈植, 朱杨柱, 何霖, 武宇 2015 航空学报 1 98

    Yi S H, Chen Z, Zhu Y Z, He L, Wu Y 2015 Acta Aeronaut. Astronaut. Sin. 1 98

    [9]

    沈清, 袁湘江, 王强, 杨武兵, 关发明, 纪锋 2012 力学进展 42 252

    Shen Q, Yuan X J, Wang Q, Yang W B, Guan F M, Ji F 2012 Adv. Mech. 42 252

    [10]

    Wang B, Wei W, Zhang Y L, Zhang H Q, Xue S Y 2015 Comput. Fluids 123 32Google Scholar

    [11]

    Zhang D D, Tan J G, Lv L 2015 Acta Astronaut. 117 440Google Scholar

    [12]

    郭广明, 刘洪, 张斌, 张庆兵 2017 物理学报 66 084701Google Scholar

    Guo G M, Liu H, Zhang B, Zhang Q B 2017 Acta Phys. Sin. 66 084701Google Scholar

    [13]

    张冬冬, 谭建国, 姚霄 2020 物理学报 69 024701Google Scholar

    Zhang D D, Tan J G, Yao X 2020 Acta Phys. Sin. 69 024701Google Scholar

    [14]

    Catrakis H J, Aguirre R C 2004 AIAA J. 42 1973Google Scholar

    [15]

    Dimotaksi P, Catrakis H, Fourguette D 2001 J. Fluid Mech. 433 105Google Scholar

    [16]

    Chew L, Christiansen W 1993 AIAA J. 31 2290Google Scholar

    [17]

    甘才俊, 李烺, 马汉东, 熊红亮 2014 物理学报 63 054703Google Scholar

    Gan C J, Li L, Ma H D, Xiong H L 2014 Acta Phys. Sin. 63 054703Google Scholar

    [18]

    Guo G M, Liu H, Zhang B 2016 Appl. Opt. 55 2708Google Scholar

    [19]

    Visbal M R, Rizzeta D P 2008 AIAA Paper 2008-1074

    [20]

    Rennie R M, Duffin D A, Jumper E J 2008 AIAA J. 46 2787Google Scholar

    [21]

    丁浩林, 易仕和, 赵鑫海, 易君如, 葛勇 2018 气体物理 6 26

    Ding H L, Yi S H, Zhao X H, Yi J R, Ge Y 2018 Phys.Gases 6 26

    [22]

    Guo G M, Luo Q 2019 Opt.Commun. 452 48Google Scholar

    [23]

    郭广明, 刘洪, 张斌, 张忠阳, 张庆兵 2016 物理学报 65 074702Google Scholar

    Guo G M, Liu H, Zhang B, Zhang Z Y, Zhang Q B 2016 Acta Phys. Sin. 65 074702Google Scholar

    [24]

    郑忠华, 范周琴, 王子昂, 余彬, 张斌 2019 航空学报 41 123295Google Scholar

    Zheng Z H, Fan Z Q, Wang Z A, Yu B, Zhang B 2019 Acta Aeronaut. Astronaut. Sin. 41 123295Google Scholar

    [25]

    秦苏洋 2016 硕士学位论文 (上海: 上海交通大学)

    Qin S Y 2016 M S. Thesis (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [26]

    Papamoschou D, Bunyajitradulya A 1997 Phys. Fluids 3 756

  • [1] Gao Peng-Cheng, Tian Xu-Shun, Huang Qiao-Gao, Pan Guang, Chu Yong. Hydrodynamic performance of manta rays swimming in staggered arranged group. Acta Physica Sinica, 2024, 73(13): 134702. doi: 10.7498/aps.73.20240399
    [2] Dong Shuai, Ji Xiang-Yong, Li Chun-Xi. Large eddy simulation of Taylor-Couette turbulent flow under transverse magnetic field. Acta Physica Sinica, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [3] Zhang Bo, He Lin, Yi Shi-He. Wavelet analysis of density fluctuation in supersonic turbulent boundary layer. Acta Physica Sinica, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [4] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [5] Wang Peng, Shen Chi-Bing. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet. Acta Physica Sinica, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [6] He Lin, Yi Shi-He, Lu Xiao-Ge. Experimental study on the density characteristics of a supersonic turbulent boundary layer. Acta Physica Sinica, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [7] Zhang Dong-Dong, Tan Jian-Guo, Li Hao, Hou Ju-Wei. Fine flow structure and mixing characteristic in supersonic flow induced by a lobed mixer. Acta Physica Sinica, 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [8] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Qing-Bing. Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing. Acta Physica Sinica, 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [9] Li Jun-Tao, Sun Yu-Tao, Pan Jian-Hua, Ren Yu-Xin. Instability and turbulent mixing of shocked V shaped interface. Acta Physica Sinica, 2016, 65(24): 245202. doi: 10.7498/aps.65.245202
    [10] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Zhong-Yang, Zhang Qing-Bing. Characteristics of convective speeds of vortex structures in mixing layer. Acta Physica Sinica, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [11] Wu Wen-Tang, Hong Yan-Ji, Fan Bao-Chun. Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force. Acta Physica Sinica, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [12] Ji Fei, Zhao Jun-Hu, Shen Qian, Zhi Rong, Gong Zhi-Qiang. The distribution of large-scale drought/flood of summer in China under different configurations of monsoon and polar vortex. Acta Physica Sinica, 2014, 63(5): 059201. doi: 10.7498/aps.63.059201
    [13] Hu Hai-Bao, Bao Lu-Yao, Huang Su-He. Simulation studies on fluid density distribution of micro-flows in a nano-channel. Acta Physica Sinica, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [14] Tu Gong-Yi, Li Wei-Feng, Huang Guo-Feng, Wang Fu-Chen. Large-eddy simulation and experimental study of deflecting oscillation of planar opposed jets. Acta Physica Sinica, 2013, 62(8): 084704. doi: 10.7498/aps.62.084704
    [15] Ding Xue-Cheng, Fu Guang-Sheng, Liang Wei-Hua, Chu Li-Zhi, Deng Ze-Chao, Wang Ying-Long. Influence of the initial ablated-particle density on distribution of density and velocity of ablated-particles. Acta Physica Sinica, 2010, 59(5): 3331-3335. doi: 10.7498/aps.59.3331
    [16] Hu Zheng-Guo, Wang Meng, Xu Hu-Shan, Sun Zhi-Yu, Wang Jian-Song, Xiao Guo-Qing, Zhan Wen-Long, Xiao Zhi-Gang, Mao Rui-Shi, Zhang Hong-Bin, Zhao Tie-Cheng, Xu Zhi-Guo, Wang Yue, Chen Ruo-Fu, Huang Tian-Heng, Gao Hui, Jia Fei, Fu Fen, Gao Qi, Han Jian-Long. Experimental study for neutron-rich exotic nuclei 17B. Acta Physica Sinica, 2008, 57(5): 2866-2870. doi: 10.7498/aps.57.2866
    [17] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [18] Liu Xiao-Dong, Li Shu-Guang, Xu Xing-Sheng, Wang Yi-Quan, Cheng Bing-Ying, Zhang Dao-Zhong. Probing the total density of states in a photonic crystal with different number density distributions of luminescent molecules. Acta Physica Sinica, 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
    [19] Lin Cheng-Jian, Zhang Huan-Qiao, Liu Zu-Hua, Wu Yue-Wei, Yang Feng, Ruan Ming. Density distributions of valence nucleons under single-particle potential model. Acta Physica Sinica, 2003, 52(4): 823-829. doi: 10.7498/aps.52.823
    [20] Liao Bo, Xue Yu, Chen Guang-Zhi. . Acta Physica Sinica, 2002, 51(2): 215-219. doi: 10.7498/aps.51.215
Metrics
  • Abstract views:  9289
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2020
  • Accepted Date:  26 March 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回