-
Mixing enhancement for supersonic mixing layer is of great importance for developing scramjet engine. The growth rate of supersonic mixing layer is smaller than that of subsonic mixing layer. As the compressibility increases, the mixing enhancement becomes more difficult. Plasma synthetic jet is regarded as a promising flow control technology. The plasma synthetic jet generator can produce high energy jet. This generator has no moving parts and does not need additional gas source. It is the first time that plasma synthetic jet has been used to enhance the mixing in supersonic mixing layers. The influence of plasma synthetic jet on the supersonic mixing layer is investigated experimentally and numerically. The experiments are conducted in the low noise supersonic mixing layer wind tunnel. The Mach number of upper stream and lower stream are 1.37 and 2.39 respectively. The convective Mach number of this wind tunnel is 0.32. The plasma synthetic jet actuators are installed in the splitter plate. The distance between the jet hole and the splitter plate end is 15 mm. The nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and schlieren are used to obtain the response of the supersonic mixing layer to single pulse plasma synthetic jet perturbation. The NPLS successfully captures the large-scaled vortex structures induced by the plasma synthetic jet in the supersonic mixing layers. The effect of plasma synthetic jet is remarkable. The schlieren images show the process of the perturbation. An oblique shock wave is generated when the jet is ejected. The PIV is employed to obtain the influence of plasma synthetic jet on the velocity field. The y-velocity standard deviation increases due to the perturbation. The actuators’ mixing enhancement effects and actuators’ performances at three locations are investigated by two-dimensional numerical simulation. The three actuators are located on the upper, bottom and end surface of splitter plate respectively. The numerical simulation results show that the mixing layer thickness is increased by the plasma synthetic jet perturbation. There are two mechanisms of perturbations while actuators are located at different positions. The actuators installed on the upper and bottom surface of splitter plate influence the mixing layer through perturbing the upper and lower stream respectively. The actuator installed at the end of splitter plate affects the mixing layer directly. The response time of supersonic mixing layers to the perturbation of the actuator installed at the end of splitter plate is shorter than those of the others. The performance of each actuator is sensitive to the location.
-
Keywords:
- mixing enhancement /
- plasma synthetic jet /
- flow control /
- supersonic mixing layers
[1] Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423
[2] Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375Google Scholar
[3] Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50Google Scholar
[4] Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940
[5] Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373
[6] Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar
[7] Collin E, Barre S, Bonnet J P 2004 Phys. Fluids 16 765Google Scholar
[8] Fernando E M, Menon S 1993 AIAA J. 31 278Google Scholar
[9] Kharitonov A, Lokotko A, Tchernyshyev A, Kopchenov V, Lomkov K, Rudakov A 2000 38th Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2000 p0559
[10] Freeman A P, Catrakis H J 2009 J. Turbul. 10 1Google Scholar
[11] Adelgren R G, Elliott G S, Crawford J B, Carter C D, Donbar J M, Grosjean D F 2005 AIAA J. 43 776Google Scholar
[12] Zhang D, Tan J, Liang L 2015 Acta Astronaut. 117 440Google Scholar
[13] Narayanaswamy V, Shin J, Clemens N, Raja L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7−10, 2008 p285
[14] Grossman K, Bohdan C, van Wie D 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6−9 , 2003 p57
[15] Grossman K, Cybyk B, van Wie D, Rigling M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5−8 , 2004 p89
[16] 王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar
Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar
[17] Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101Google Scholar
[18] Zhou Y, Xia Z X, Luo Z B, Wang L 2016 Sci. China Technol. Sc. 60 146
[19] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云 2017 物理学报 66 084705Google Scholar
Wang H Y, Li J, Jin D, Dai H, Can T, Wu Y 2017 Acta Phys. Sin. 66 084705Google Scholar
[20] Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne J P 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June−1 July, 2010 p5103
[21] Huet M 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16−20 , 2014 p2620
[22] Chedevergne F, Léon O, Bodoc V, Caruana D 2015 Int. J. Heat Fluid Fl. 56 1Google Scholar
[23] Bogdanoff D W 1983 AIAA J. 21 926Google Scholar
[24] Papamoschou D 1991 AIAA J. 29 680
[25] Arvind S, Jamey D J 2007 J. Phys. D: Appl. Phys. 40 637Google Scholar
[26] Zhou Y, Xia Z X, Luo Z B, Wang L, Deng X 2017 Acta Astronaut. 133 95Google Scholar
[27] Haack S, Taylor T, Z. Cybyk B, H. Foster C, Alvi F 2011 42nd AIAA Plasmadynamics and Lasers Conference Honolulu, Hawaii, 27−30 June, 2011 p3997
[28] 赵玉新 2008 博士学位论文(长沙: 国防科技大学)
Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[29] 罗振兵 2006 博士学位论文(长沙: 国防科技大学)
Luo Z B 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[30] Narayanaswamy V, Raja L L, Clemens N T 2010 AIAA J. 48 297Google Scholar
[31] Freeman L J 2014 Master Thesis (California Polytechnic State University)
[32] 周岩 2018 博士学位论文 (长沙: 国防科技大学)
Zhou Y 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
-
图 15 (T0 + 555 μs)时刻密度场 (a) 未受扰动; (b) 激励器在隔板上表面; (c) 激励器在隔板尾端; (d) 激励器在隔板下表面
Figure 15. Contours of density at T0 + 555 μs: (a) Unperturbation; (b) the actuator at the upper surface of the splitter plate; (c) the actuator at the end surface of the splitter plate; (d) the actuator at the bottom surface of the splitter plate.
表 1 压力匹配情况下校测流场参数
Table 1. Flow parameters of supersonic mixing layer.
马赫数Ma 速度U/m·s–1 静温T/K 总温T0/K 运动黏度μ/
10–5 m2·s–11.37 405.16 218.39 300 1.4312 2.39 567.18 139.87 300 0.9635 -
[1] Zang A, Tempel T, Yu K, Buckley S 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2005 p1423
[2] Gutmark E J, Schadow C S, Yu K H 1995 Annu. Rev. Fluid Mech. 27 375Google Scholar
[3] Zhang C X, Liu Y, Fu B S, Yu X J 2018 Acta Astronaut. 153 50Google Scholar
[4] Haimovitch Y, Gartenberg E, Roberts J A, Northam G 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, IN, 27−29 June, 1994 p2940
[5] Guirguis R, Grinstein F, Young T, Oran E, Kailasanath K 1987 25th AIAA Aerospace Sciences Meeting Reno, Nevada, 12−15 January, 1987 p0373
[6] Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar
[7] Collin E, Barre S, Bonnet J P 2004 Phys. Fluids 16 765Google Scholar
[8] Fernando E M, Menon S 1993 AIAA J. 31 278Google Scholar
[9] Kharitonov A, Lokotko A, Tchernyshyev A, Kopchenov V, Lomkov K, Rudakov A 2000 38th Aerospace Sciences Meeting and Exhibit Reno, Nevada, 10−13 January, 2000 p0559
[10] Freeman A P, Catrakis H J 2009 J. Turbul. 10 1Google Scholar
[11] Adelgren R G, Elliott G S, Crawford J B, Carter C D, Donbar J M, Grosjean D F 2005 AIAA J. 43 776Google Scholar
[12] Zhang D, Tan J, Liang L 2015 Acta Astronaut. 117 440Google Scholar
[13] Narayanaswamy V, Shin J, Clemens N, Raja L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7−10, 2008 p285
[14] Grossman K, Bohdan C, van Wie D 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6−9 , 2003 p57
[15] Grossman K, Cybyk B, van Wie D, Rigling M 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5−8 , 2004 p89
[16] 王林, 夏智勋, 罗振兵, 周岩, 张宇 2014 物理学报 63 194702Google Scholar
Wang L, Xia Z X, Luo Z B, Zhou Y, Zhang Y 2014 Acta Phys. Sin. 63 194702Google Scholar
[17] Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 076101Google Scholar
[18] Zhou Y, Xia Z X, Luo Z B, Wang L 2016 Sci. China Technol. Sc. 60 146
[19] 王宏宇, 李军, 金迪, 代辉, 甘甜, 吴云 2017 物理学报 66 084705Google Scholar
Wang H Y, Li J, Jin D, Dai H, Can T, Wu Y 2017 Acta Phys. Sin. 66 084705Google Scholar
[20] Hardy P, Barricau P, Caruana D, Gleyzes C, Belinger A, Cambronne J P 2010 40th Fluid Dynamics Conference and Exhibit Chicago, Illinois, 28 June−1 July, 2010 p5103
[21] Huet M 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16−20 , 2014 p2620
[22] Chedevergne F, Léon O, Bodoc V, Caruana D 2015 Int. J. Heat Fluid Fl. 56 1Google Scholar
[23] Bogdanoff D W 1983 AIAA J. 21 926Google Scholar
[24] Papamoschou D 1991 AIAA J. 29 680
[25] Arvind S, Jamey D J 2007 J. Phys. D: Appl. Phys. 40 637Google Scholar
[26] Zhou Y, Xia Z X, Luo Z B, Wang L, Deng X 2017 Acta Astronaut. 133 95Google Scholar
[27] Haack S, Taylor T, Z. Cybyk B, H. Foster C, Alvi F 2011 42nd AIAA Plasmadynamics and Lasers Conference Honolulu, Hawaii, 27−30 June, 2011 p3997
[28] 赵玉新 2008 博士学位论文(长沙: 国防科技大学)
Zhao Y X 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[29] 罗振兵 2006 博士学位论文(长沙: 国防科技大学)
Luo Z B 2006 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[30] Narayanaswamy V, Raja L L, Clemens N T 2010 AIAA J. 48 297Google Scholar
[31] Freeman L J 2014 Master Thesis (California Polytechnic State University)
[32] 周岩 2018 博士学位论文 (长沙: 国防科技大学)
Zhou Y 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
Catalog
Metrics
- Abstract views: 7986
- PDF Downloads: 78
- Cited By: 0