Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dimension-reduced generalized likelihood ratio detection based on sampling of normal modes in deep ocean

Kong De-Zhi Sun Chao Li Ming-Yang Zhuo Jie Liu Xiong-Hou

Citation:

Dimension-reduced generalized likelihood ratio detection based on sampling of normal modes in deep ocean

Kong De-Zhi, Sun Chao, Li Ming-Yang, Zhuo Jie, Liu Xiong-Hou
PDF
HTML
Get Citation
  • In this paper, two generalized likelihood ratio (GLR) detectors are presented for the case of multiple snapshots of test data to detect the presence of an underwater acoustic source in the deep ocean. The two GLR detectors are termed the eigenvalue detector (EVD) and the constant false alarm rate eigenvalue detector (CFAR EVD), respectively. Theoretical analysis and numerical results show that for a given input signal-to-noise ratio (SNR) of the array, the GLR detectors achieve higher output SNRs when the spatial dimension of test data decreases. To further enhance the detection performances of the GLR detectors, we propose a dimension-reduced (DR-GLR) method based on array sampling of modal information. This DR-GLR method combines the characteristics of sound propagation and array receiving. According to normal mode theory, acoustic signals emitted from the acoustic source lie in the modal space spanned by the sampled modal information of the array. Resulting from the restriction of the array size, it often occurs in deep ocean when the dimension of " effective modal subspace” is less than that of the test data which is equivalent to the number of hydrophones. Based on this phenomenon, we reconstruct the modal information by merely retaining the " effective modal subspace” to formulate the dimension reduction matrix. The DR-GLR test statistics is deduced by employing the dimension reduction matrix when using the vertical linear array (VLA) and the horizontal linear array (HLA), respectively. The DR-GLR detectors when using an HLA require more computational amount than when using a VLA. Simulation experiments are conducted to analyze the detection performances of the two GLR detectors, and verify the performance improvement effects of DR-GLR detectors. The numerical results show that the CFAR EVD presents good robustness to the uncertainty of the noise power and the DR-GLR detectors outperform the GLR detectors in detection performance. It also turns out the acoustic signals received by the HLA lie in a lower-dimensional " effective modal subspace” than by the VLA, and thus when using an HLA the DR-GLR detectors present higher detection probabilities than using a VLA. Moreover, the smaller the dimension of the " effective modal subspace”, the better the performance improvement of the DR-GLR detectors will be. The dimension of the " effective modal subspace” increases with hydrophone spacing and/or the source frequency increasing.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11534009), the National Natural Science Foundation of China (Grant No. 51479169), and the Opening Project of State Key Laboratory of Acoustics (Grant No. SKLA201702).
    [1]

    段睿 2016 博士学位论文 (西安: 西北工业大学)

    Duan R 2016 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

    [2]

    李启虎, 李敏, 杨秀庭 2008 声学学报 33 193

    Li Q H, Li M, Yang X T 2008 Acta Acustica 33 193

    [3]

    Gorodetskaya E Y, Malekhanov A I, Sazontov A G 2008 IEEE J. Oceanic Eng. 24 1109

    [4]

    Sha L, Nolte L W 2006 IEEE J. Oceanic Eng. 31 5263

    [5]

    Sha L, Nolte L W 2005 J. Acoust. Soc. Am. 117 5653

    [6]

    刘宗伟, 孙超, 易锋, 郭国强, 向龙凤 2014 声学学报 39 309

    Liu Z W, Sun C, Yi F, Guo G Q, Xiang L F 2014 Acta Acustica 39 309

    [7]

    刘宗伟, 孙超, 吕连港 2015 声学学报 05 5949

    Liu Z W, Sun C, Lv L G 2015 Acta Acustica 05 5949

    [8]

    Hari V N, Anand G V 2013 Digital Signal Processing 23 1645Google Scholar

    [9]

    李明杨, 孙超, 邵炫 2014 物理学报 63 204302Google Scholar

    Li M Y, Sun C, Shao X 2014 Acta Phys. Sin. 63 204302Google Scholar

    [10]

    Li M Y, Sun C, Willett P 2017 IEEE J. Oceanic Eng. 43 131

    [11]

    Scharf L L, Friedlander B 1994 IEEE trans. Signal Process. 42 2146Google Scholar

    [12]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089Google Scholar

    [13]

    刘宗伟, 孙超, 向龙凤, 易锋 2014 物理学报 63 034304

    Liu Z W, Sun C, Xiang L F, Yi F 2014 Acta Phys. Sin. 63 034304

    [14]

    斯蒂芬 Kay 著 (罗鹏飞, 张文明 译) 2011 统计信号处理基础 (北京: 电子工业出版社) 第573—574页

    Kay S M (translated by Luo P F, Zhang W M) 2011 Fundamentals of Statistical Signal Processing (Beijing: Pushlishing House of Electronics Industry) pp573−574

    [15]

    Wang P, Fang J, Han N, Li H B 2010 IEEE Trans. Veh. Technol. 59 1791Google Scholar

    [16]

    Hack D E, Rossler C W, Patton L K 2014 IEEE Signal Process. Lett. 21 1002

    [17]

    Jin Y, Friedlander B 2004 IEEE Trans. Signal Process. 53 13

    [18]

    Kong D Z, Sun C, Liu X H, Xie L, Jiang G Y 2017 Oceans 2017 Aberdeen, UK, June 19−22, 2017 p1

    [19]

    Kong D Z, Sun C, Liu X H, Li M Y, Xie L 2018 Oceans 2018 Kobe, Japan, May 28−31, 2018 p1

    [20]

    Morgan D R, Smith T M 1990 J. Acoust. Soc. Am. 87 737Google Scholar

    [21]

    Tandra R, Sahai A 2008 IEEE J. Sel. Top. Signal Process. 2 4Google Scholar

    [22]

    Haddadi F, Malek M M, Nayebi M M, Aref M R 2009 IEEE Trans. Signal Process. 58 452

  • 图 1  EVD的输出信噪比随接收数据快拍数和空间维度的变化曲线, ${\rm snr} = 1$ (a) 固定空间维度$N = 20$; (b) 固定快拍数$L = 100$

    Figure 1.  The output SNR of EVD varying with various snapshot number and spatial dimension, ${\rm snr} = 1$: (a) spatial dimension $N = 20$; (b) snapshot number $L = 100$.

    图 2  使用VLA时DR-GLR检测器的算法流程图

    Figure 2.  The flow diagrams of the DR-GLR detectors when using a VLA

    图 3  水平阵声源信号入射方位

    Figure 3.  The arrival angle of acoustic signal on the HLA.

    图 4  使用HLA时DR-GLR检测器的算法流程图

    Figure 4.  The flow diagrams of the DR-GLR detectors when using a HLA.

    图 5  深海波导及相关环境参数

    Figure 5.  Deep-sea waveguide and environmental parameters

    图 6  深海声速剖面

    Figure 6.  Deep-sea sound speed profile.

    图 7  不同信噪比下检测概率曲线比较, $P_{\rm FA}$ = 0.01 (a) $L = 20$; (b) $L = 40$

    Figure 7.  Probability of detection curves with various SNRs, $P_{\rm FA}$ = 0.01: (a) $L = 20$; (b) $L = 40$.

    图 8  噪声功率不确定, 不同信噪比下检测概率曲线比较 (a)$L = 20$; (b)$L = 40$

    Figure 8.  Probability of detection curves with various SNRs when noise power is uncertain: (a) $L = 20$; (b) $L = 40$.

    图 9  不同数据维度下的检测概率曲线对比, 快拍数$L = 40$ (a) EVD; (b) CEVD

    Figure 9.  Probability of detection curves with various spatial dimension: (a) EVD; (b) CEVD.

    图 10  阵列采样模态信息及相应模态矩阵的奇异值 (a) VLA采样的各阶模态; (b) VLA; 归一化的各阶奇异值分布; (c) HLA采样的各阶模态; (d) HLA, 归一化的各阶奇异值分布

    Figure 10.  Modal information sampled on the array and singular values of corresponding mode matrices: (a) Various modes sampled on the VLA; (b) normalized singular values associated with the VLA; (c) various modes sampled on the HLA; (d) normalized singular values associated with the HLA.

    图 11  不同信噪比下的检测概率曲线对比, 快拍数$L = 20$ (a) VLA; (b) HLA

    Figure 11.  Probability of detection curves of different detectors, snapshot number $L = 20$: (a) VLA; (b) HLA.

    图 12  噪声功率不确定, 不同信噪比下检测概率曲线对比, 快拍数$L = 40$ (a) VLA; (b) HLA

    Figure 12.  Probability of detection curves of different detectors when noise power is uncertain, snapshot number $L = 40$: (a) VLA; (b) HLA.

    图 13  声源激发的各阶简正波模态函数和水平波数 (a)各阶模态函数幅值随波导深度的变化; (b)各阶水平波数分布

    Figure 13.  Modal functions and horizontal wavenumber of various normal modes excited by the acoustic source: (a) Modal functions along with various depths; (b) distribution of various horizontal wavenumbers.

    图 14  阵列配置对降维程度的影响, $N = 40$ (a) 阵列深度100 m; (b) 阵元间距4 m

    Figure 14.  The influence of array configuration on the degree of dimension reduction, $N = 40$: (a) Array depth of 100 m; (b) hydrophone spacing of 4 m.

    图 15  降维系数随声源频率的变化曲线

    Figure 15.  The dimension reduction coefficient varying with increasing frequency.

  • [1]

    段睿 2016 博士学位论文 (西安: 西北工业大学)

    Duan R 2016 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

    [2]

    李启虎, 李敏, 杨秀庭 2008 声学学报 33 193

    Li Q H, Li M, Yang X T 2008 Acta Acustica 33 193

    [3]

    Gorodetskaya E Y, Malekhanov A I, Sazontov A G 2008 IEEE J. Oceanic Eng. 24 1109

    [4]

    Sha L, Nolte L W 2006 IEEE J. Oceanic Eng. 31 5263

    [5]

    Sha L, Nolte L W 2005 J. Acoust. Soc. Am. 117 5653

    [6]

    刘宗伟, 孙超, 易锋, 郭国强, 向龙凤 2014 声学学报 39 309

    Liu Z W, Sun C, Yi F, Guo G Q, Xiang L F 2014 Acta Acustica 39 309

    [7]

    刘宗伟, 孙超, 吕连港 2015 声学学报 05 5949

    Liu Z W, Sun C, Lv L G 2015 Acta Acustica 05 5949

    [8]

    Hari V N, Anand G V 2013 Digital Signal Processing 23 1645Google Scholar

    [9]

    李明杨, 孙超, 邵炫 2014 物理学报 63 204302Google Scholar

    Li M Y, Sun C, Shao X 2014 Acta Phys. Sin. 63 204302Google Scholar

    [10]

    Li M Y, Sun C, Willett P 2017 IEEE J. Oceanic Eng. 43 131

    [11]

    Scharf L L, Friedlander B 1994 IEEE trans. Signal Process. 42 2146Google Scholar

    [12]

    Collison N E, Dosso S E 2000 J. Acoust. Soc. Am. 107 3089Google Scholar

    [13]

    刘宗伟, 孙超, 向龙凤, 易锋 2014 物理学报 63 034304

    Liu Z W, Sun C, Xiang L F, Yi F 2014 Acta Phys. Sin. 63 034304

    [14]

    斯蒂芬 Kay 著 (罗鹏飞, 张文明 译) 2011 统计信号处理基础 (北京: 电子工业出版社) 第573—574页

    Kay S M (translated by Luo P F, Zhang W M) 2011 Fundamentals of Statistical Signal Processing (Beijing: Pushlishing House of Electronics Industry) pp573−574

    [15]

    Wang P, Fang J, Han N, Li H B 2010 IEEE Trans. Veh. Technol. 59 1791Google Scholar

    [16]

    Hack D E, Rossler C W, Patton L K 2014 IEEE Signal Process. Lett. 21 1002

    [17]

    Jin Y, Friedlander B 2004 IEEE Trans. Signal Process. 53 13

    [18]

    Kong D Z, Sun C, Liu X H, Xie L, Jiang G Y 2017 Oceans 2017 Aberdeen, UK, June 19−22, 2017 p1

    [19]

    Kong D Z, Sun C, Liu X H, Li M Y, Xie L 2018 Oceans 2018 Kobe, Japan, May 28−31, 2018 p1

    [20]

    Morgan D R, Smith T M 1990 J. Acoust. Soc. Am. 87 737Google Scholar

    [21]

    Tandra R, Sahai A 2008 IEEE J. Sel. Top. Signal Process. 2 4Google Scholar

    [22]

    Haddadi F, Malek M M, Nayebi M M, Aref M R 2009 IEEE Trans. Signal Process. 58 452

  • [1] Zhang Shao-Dong, Sun Chao, Xie Lei, Liu Xiong-Hou, Wang Xuan. Influence of environmental uncertainty on source power estimation in shallow water waveguide. Acta Physica Sinica, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [2] Song Tong-Tong, Luo Jie, Lai Yun. Pseudo-local effect medium theory. Acta Physica Sinica, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [3] Zhai Han-Yu, Shen Jia-Yin, Xue Xun. Effective quintessence from string landscape. Acta Physica Sinica, 2019, 68(13): 139501. doi: 10.7498/aps.68.20190282
    [4] Meng Rui-Jie, Zhou Shi-Hong, Li Feng-Hua, Qi Yu-Bo. Identification of interference normal mode pairs of low frequency sound in shallow water. Acta Physica Sinica, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [5] Guo Li-Ren, Hu Yi-Hua, Wang Yun-Peng, Xu Shi-Long. Separate estimation of laser micro-Doppler parameters based on maximum likelihood schemes. Acta Physica Sinica, 2018, 67(11): 114202. doi: 10.7498/aps.67.20172639
    [6] Li Xiao-Man, Zhang Ming-Hui, Zhang Hai-Gang, Piao Sheng-Chun, Liu Ya-Qin, Zhou Jian-Bo. A passive range method of broadband impulse source based on matched-mode processing. Acta Physica Sinica, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [7] Ren Zi-Liang, Qin Yong, Huang Jin-Wang, Zhao Zhi, Feng Jiu-Chao. Reconstruction algorithm of chaotic signal based on generalized likelihood ratio threshold-decision. Acta Physica Sinica, 2017, 66(4): 040503. doi: 10.7498/aps.66.040503
    [8] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He. Warping transform of the refractive normal mode in a shallow water waveguide. Acta Physica Sinica, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [9] Liang Guo-Long, Tao Kai, Wang Jin-Jin, Fan Zhan. Broadband target beam-space transformation in generalized likelihood ratio test using acoustic vector sensor array. Acta Physica Sinica, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [10] Xu Yan, Fan Wei, Ji Yan-Jun, Song Ren-Gang, Chen Bing, Zhao Zhen-Hua, Chen Da. Effective field theory approach to the weakly interacting bose gas. Acta Physica Sinica, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [11] Huang Yong-Ping, Zhao Guang-Pu, Xiao Xi, Wang Fan-Hou. Effective radius of curvature of spatially partially coherent beams propagating through non-Kolmogorov turbulence. Acta Physica Sinica, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [12] Gong Jian-Qiang, Liang Chang-Hong. Extraction algorithm for retrieving the effective constitutive parameters of metamaterials based on TE10 rectangular waveguide. Acta Physica Sinica, 2011, 60(5): 059204. doi: 10.7498/aps.60.059204
    [13] Yuan Du-Qi. Valid gain range of space for atom laser. Acta Physica Sinica, 2010, 59(8): 5271-5275. doi: 10.7498/aps.59.5271
    [14] Chang Jian-Zhong, Liu Mou-Bin. A new boundary treatment algorithm for dissipative particle dynamics. Acta Physica Sinica, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [15] Zhang Wen, Liu Cai-Chi, Wang Hai-Yun, Xu Yue-Sheng, Shi Yi-Qing. The effective viscosity of silicon melt in magnetic field. Acta Physica Sinica, 2008, 57(6): 3875-3879. doi: 10.7498/aps.57.3875
    [16] Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [17] Cai Chang-Ying, Ren Zhong-Zhou, Ju Guo-Xing. Analytical solutions of the three-dimensional Schr?dinger equation with an exponentially changing effective mass. Acta Physica Sinica, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [18] CHEN XIAO-BO, MENG CHAO, WANG YA-FEI, MA HUI, LI MEI-XIAN. POPULATION BRANCHING RATIO MODEL——AN EFFECTIVE QUALITIVE ANALYSIS METHOD ABOUT UP-CONVERSION EFFICIENCY. Acta Physica Sinica, 2000, 49(6): 1176-1179. doi: 10.7498/aps.49.1176
    [19] YING HE-PING, JI DA-REN. AN EFFICIENT CLUSTER ALGORITHM AND THE STUDY FOR THE TWO-DIMENSIONAL QUANTUM HEISENBERG ANTIFERROMAGNET. Acta Physica Sinica, 1993, 42(11): 1845-1850. doi: 10.7498/aps.42.1845
    [20] GUO ZHI-CHUN, MIAO SHENG-QING, YI YOU-MIN. THE EFFECTIVE POTENTIAL APPROXIMATION OF ADSORBED 4He FILM IN QUASI TWO DIMENSIONAL MOTION. Acta Physica Sinica, 1984, 33(6): 797-804. doi: 10.7498/aps.33.797
Metrics
  • Abstract views:  7507
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  13 January 2019
  • Accepted Date:  30 May 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回