Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure

Yan Xue-Wen Wang Zhao-Jin Wang Bo-Yang Sun Ze-Yu Zhang Chen-Xue Han Qing-Yan Qi Jian-Xia Dong Jun Gao Wei

Citation:

Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure

Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei
PDF
HTML
Get Citation
  • A series of the hexagonal-phase NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0% Ce3+@NaLuF4:x%Yb3+ core-shell (CS) nanocrystals with codoping different Yb3+ ions in the shell is successfully built by a sequential growth process. The crystal structures and morphologies of samples are characterized by X-ray diffractometer and transmission electron microscope. With the Yb3+ ion concentration increasing from 0% to 15% in NaLuF4 shell, none of the crystal structures, sizes, and morphologies of the samples changes obviously because of the similarity in ionic radius between Yb3+ and the ions in shell and the low doping concentration. Under 980 nm near-infrared (NIR) excitation, the NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ core nanocrystal produce green and red UC emission. And the red UC emission intensity is higher than green emission intensity. This is because two effective cross-relaxation processes happen between Ho3+ and Ce3+ ions, which results in the enhancement of the red emission. However, the overall emission intensity of NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystal decrease compared with that of the NaLuF4:20.0%Yb3+/2.0%Ho3+ nanocrystal. Thus, to further enhance the red UC emission intensity in NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystal, the NaLuF4:20.0%Yb3+/2.0% Ho3+/12.0%Ce3+@NaLuF4:x%Yb3+ CS nanocrystal are prepared for blocking the excitation and emission energy, transmitting surface quenching center and getting more excitation energy through doping Yb3+ ions in NaLuF4 shell. It can be clearly seen that the red UC emission intensity of CS nanocrystal first increases and then decreases with Yb3+ ion concentration increasing. Meanwhile, the corresponding red-to-green ratio increases from 4.9 to 5.6. The highest red UC emission intensity is observed in each of the NaLuF4:20.0%Yb3+ /2.0%Ho3+/12.0%Ce3+@NaLuF4:10%Yb3+ CS nanocrystal because the Ho3+ ions get more energy through the following three ways: 1) Yb3+ (core)-Ho3+ (core); 2) Yb3+ (shell)-Ho3+ (core); 3) Yb3+ (shell)-Yb3+ (core)-Ho3+ (core). Thus, building CS nanocrystals is one of the most effective approaches in order to improve the UC efficiency by suppressing the non-radiative decay of activators in the core and getting more excitation energy through different energy transfer ways. These NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@NaLuF4:Yb3+ CS nanocrystals with red UC emission have great potential applications in biological field and multi-primary color.
      Corresponding author: Dong Jun, dongjun@xupt.edu.cn ; Gao Wei, gaowei@xupt.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11604262), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM1052), Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2019KJXX-058), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 18JK0046), and the Key Program of the Scientific Research of Baoji University of Arts and Sciences, China (Grant No. ZK2018054)
    [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159Google Scholar

    [2]

    Downing E, Hesselink L, Ralston J, Macfarlane R A 1996 Science 273 1185Google Scholar

    [3]

    Zhang Y, Zhang L, Deng R, Tian J, Zong Y, Jin D, Liu X G 2014 J. Am. Chem. Soc. 136 4893Google Scholar

    [4]

    Zou W, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C 2012 Nat. Photon. 6 560Google Scholar

    [5]

    Su Q, Feng W, Yang D, Li F 2017 Acc. Chem. Res. 50 32Google Scholar

    [6]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [7]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 2 2

    [8]

    高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin.: Phys. Mech. Astron. 40 287

    [9]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44Google Scholar

    [10]

    Teng X, Zhu Y H, Wei W, Wang S C, Huang J F, Naccache R, Hu W B, Tok A I Y, Han Y, Zhang Q C, Fan Q L, Huang W, Capobianco J A, Huang L 2012 J. Am. Chem. Soc. 134 8340Google Scholar

    [11]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102Google Scholar

    [12]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721Google Scholar

    [13]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782Google Scholar

    [14]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733Google Scholar

    [15]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505Google Scholar

    [16]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168Google Scholar

    [17]

    Gao D L, Zhang X Z, Zheng H R, Gao W, He E J 2013 J. Alloy. Compd. 554 395Google Scholar

    [18]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [19]

    何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 物理学报 62 237803Google Scholar

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803Google Scholar

    [20]

    Dong J, Gao W, Han Q Y, Wang Y K, Qi J X, Yan X W, Sun M T 2019 Rev. Phys. 4 100026Google Scholar

    [21]

    Dong J, Zhang Z L, Zheng H R, Sun M T 2015 Nanophotonics 4 472

    [22]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [23]

    Rai M, Singh S K, Singh A K, Prasad R, Koch B, Mishra K, Rai S B 2015 ACS Appl. Mater. Inter. 7 15339Google Scholar

    [24]

    Zuo J, Li Q Q, Xue B, Li C X, Chang Y L, Zhang Y L, Liu X M, Tu L P, Zhang H, Kong X G 2017 Nanoscale 9 7941Google Scholar

    [25]

    Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H 2004 Nano Lett. 4 2191Google Scholar

    [26]

    Chen X, Peng D, Ju Q, Wang F 2015 Chem. Soc. Rev. 44 1318Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 Mater. Res. Bull. 80 256Google Scholar

    [28]

    高伟, 董军 2017 物理学报 66 204206Google Scholar

    Gao W, Dong J 2017 Acta Phys. Sin. 66 204206Google Scholar

    [29]

    Hu H, Chen Z G, Cao T Y, Zhang Q, Yu M G, Li F Y, Yi T, Huang C H 2008 Nanotechnology 19 375702Google Scholar

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

    [31]

    Ye S, Chen G Y, Shao W, Junle Q, Paras N P 2015 Nanoscale 7 3976Google Scholar

    [32]

    Xie X G, Ga N G, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608Google Scholar

    [33]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [34]

    Vetrone B F, Naccache R, MahalingamV, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [35]

    Gao W, Kong X Q, Han Q Y, Dong J, Zhang W W, Zhang B, Yan X W, Zhang Z L, He E J, Zheng H R 2018 J. Lumin. 196 186

    [36]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

  • 图 1  (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+纳米晶体核, (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:x%Yb3+(x = 0%, 5.0%, 10.0%, 15.0%)纳米核壳结构的XRD图谱

    Figure 1.  XRD patterns of (a) NaLuF4:20.0%Yb3+ /2.0%Ho3+/12.0%Ce3+ nanocrystals and (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:x%Yb3+(x = 0%, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    图 2  (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+纳米晶体和NaLuF4:20.0%Yb3+/2.0%Ho3+/12%Ce3+@ NaLuF4:x%Yb3+((b) 0, (c) 5.0%, (d)10.0%, (e) 15.0%)纳米核壳结构的TEM图谱

    Figure 2.  TEM images and EDX spectra of (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystals and (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: x%Yb3+ (x = 0, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    图 3  在980 nm激发下, (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+和(b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 8.0%,10.0%, 12.0%, 15.0%)纳米晶体及核壳结构的上转换发射光谱(A)、增强因子(B)和红绿比(C)

    Figure 3.  The upconverison emission spectra (A), enhancement factor (B) and red andgreen emission intensity ratio (R/G) (C) of (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystals and (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12%Ce3+@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 8.0%, 10.0%, 12.0%,15.0%) core-shell nanocrystals under 980 nm excitation.

    图 4  (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+以及(b)—(e)NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@NaLuF4:x%Yb3+ (x = 0%, 5.0%, 10.0%, 15.0%) 纳米晶体及核壳结构的色度坐标图

    Figure 4.  The CIE diagram with position of color coordinates of Ho3+ in (a) NaLuF4 nanocrystals and (b)-(e) NaLuF4@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    图 5  Ho3+, Yb3+和Ce3+离子的能级图和可能的上转换跃迁机理

    Figure 5.  Energy level diagrams of Ho3+, Yb3+, and Ce3+ions as well as proposed UC mechanisms.

    图 6  在980 nm近红外激光的激发下, Ho3+离子掺杂NaLuF4和NaLuF4@ NaLuF4纳米晶体的红光上转换发射的寿命衰减曲线图

    Figure 6.  Luminescence lifetimes of NaLuF4 and NaLuF4@NaLuF4 core-shell nanocrystals under 980 nm excitation at 654 nm.

    表 1  NaLuF4和NaLuF4@NaLuF4核壳纳米晶体的的CIE色坐标

    Table 1.  The calculated CIE chromaticity coordinates (x, y) of Ho3+ in NaLuF4 nanocrystals and NaLuF4@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    Samples CIE chromaticity coordinates
    x y
    a (NaLuF4:20.0%Yb3+/2.0%Ho3+ /12.0%Ce3+) 0.5501 0.3891
    b (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4) 0.5621 0.3786
    c (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: 5.0%Yb3+) 0.5643 0.3727
    d (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: 10.0%Yb3+) 0.5724 0.3692
    e (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: 15.0%Yb3+) 0.5756 0.3599
    DownLoad: CSV

    表 2  NaLuF4和NaLuF4@ NaLuF4核壳纳米晶体的红光发射的荧光寿命

    Table 2.  Luminescence lifetimes of NaLuF4 and NaLuF4@NaLuF4 core-shell nanocrystals under 980 nm excitation at 650 nm

    SamplesLifetime/μs
    650 nm
    a (NaLuF4:20.0%Yb3+/2.0%Ho3+ 12.0%Ce3+)97.4 ± 0.2
    b (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4)125.4 ± 1.1
    c (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:5.0%Yb3+)136.3 ± 0.8
    d (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:10.0%Yb3+)184.2 ± 0.6
    e (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:15.0%Yb3+)144.4 ± 0.4
    DownLoad: CSV
  • [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159Google Scholar

    [2]

    Downing E, Hesselink L, Ralston J, Macfarlane R A 1996 Science 273 1185Google Scholar

    [3]

    Zhang Y, Zhang L, Deng R, Tian J, Zong Y, Jin D, Liu X G 2014 J. Am. Chem. Soc. 136 4893Google Scholar

    [4]

    Zou W, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C 2012 Nat. Photon. 6 560Google Scholar

    [5]

    Su Q, Feng W, Yang D, Li F 2017 Acc. Chem. Res. 50 32Google Scholar

    [6]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [7]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 2 2

    [8]

    高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin.: Phys. Mech. Astron. 40 287

    [9]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44Google Scholar

    [10]

    Teng X, Zhu Y H, Wei W, Wang S C, Huang J F, Naccache R, Hu W B, Tok A I Y, Han Y, Zhang Q C, Fan Q L, Huang W, Capobianco J A, Huang L 2012 J. Am. Chem. Soc. 134 8340Google Scholar

    [11]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102Google Scholar

    [12]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721Google Scholar

    [13]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782Google Scholar

    [14]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733Google Scholar

    [15]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505Google Scholar

    [16]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168Google Scholar

    [17]

    Gao D L, Zhang X Z, Zheng H R, Gao W, He E J 2013 J. Alloy. Compd. 554 395Google Scholar

    [18]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [19]

    何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 物理学报 62 237803Google Scholar

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803Google Scholar

    [20]

    Dong J, Gao W, Han Q Y, Wang Y K, Qi J X, Yan X W, Sun M T 2019 Rev. Phys. 4 100026Google Scholar

    [21]

    Dong J, Zhang Z L, Zheng H R, Sun M T 2015 Nanophotonics 4 472

    [22]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [23]

    Rai M, Singh S K, Singh A K, Prasad R, Koch B, Mishra K, Rai S B 2015 ACS Appl. Mater. Inter. 7 15339Google Scholar

    [24]

    Zuo J, Li Q Q, Xue B, Li C X, Chang Y L, Zhang Y L, Liu X M, Tu L P, Zhang H, Kong X G 2017 Nanoscale 9 7941Google Scholar

    [25]

    Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H 2004 Nano Lett. 4 2191Google Scholar

    [26]

    Chen X, Peng D, Ju Q, Wang F 2015 Chem. Soc. Rev. 44 1318Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 Mater. Res. Bull. 80 256Google Scholar

    [28]

    高伟, 董军 2017 物理学报 66 204206Google Scholar

    Gao W, Dong J 2017 Acta Phys. Sin. 66 204206Google Scholar

    [29]

    Hu H, Chen Z G, Cao T Y, Zhang Q, Yu M G, Li F Y, Yi T, Huang C H 2008 Nanotechnology 19 375702Google Scholar

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

    [31]

    Ye S, Chen G Y, Shao W, Junle Q, Paras N P 2015 Nanoscale 7 3976Google Scholar

    [32]

    Xie X G, Ga N G, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608Google Scholar

    [33]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [34]

    Vetrone B F, Naccache R, MahalingamV, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [35]

    Gao W, Kong X Q, Han Q Y, Dong J, Zhang W W, Zhang B, Yan X W, Zhang Z L, He E J, Zheng H R 2018 J. Lumin. 196 186

    [36]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

  • [1] Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun. Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal. Acta Physica Sinica, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [4] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] Guo Fu-Zhou, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Fei Hong-Ming, Sun Fei, Yang Yi-Biao. Far-field directional emission of fluorescence enhanced by dielectric microsphere and metallic planar nanolayers. Acta Physica Sinica, 2022, 71(17): 176801. doi: 10.7498/aps.71.20220605
    [7] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [8] Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan. Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method. Acta Physica Sinica, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [9] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [10] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [11] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [12] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [13] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [14] Gao Wei, Dong Jun. Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions. Acta Physica Sinica, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [15] Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong. Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Physica Sinica, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [16] Yang Jian-Zhi, Qiu Jian-Bei, Yang Zheng-Wen, Song Zhi-Guo, Yang Yong, Zhou Da-Cheng. Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors. Acta Physica Sinica, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [17] Zheng Long-Jiang, Li Ya-Xin, Liu Hai-Long, Xu Wei, Zhang Zhi-Guo. Up-conversion luminescence and temperature characteristics of Tm3+, Yb3+ co-doped CaWO4 polycrystal material. Acta Physica Sinica, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [18] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [19] Meng Qing-Yu, Chen Bao-Jiu, Zhao Xiao-Xia, Yan Bin, Wang Xiao-Jun, Xu Wu. Luminescence intensity of Ag+ doped Y2O3:Eu nanocrystals. Acta Physica Sinica, 2006, 55(5): 2623-2627. doi: 10.7498/aps.55.2623
    [20] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
Metrics
  • Abstract views:  8294
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  28 March 2019
  • Accepted Date:  01 July 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回