Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure

Gao Wei Sun Ze-Yu Guo Li-Chun Han Shan-Shan Chen Bin-Hui Han Qing-Yan Yan Xue-Wen Wang Yong-Kai Liu Ji-Hong Dong Jun

Citation:

Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure

Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun
PDF
HTML
Get Citation
  • Constructing core-shell structures can effectively reduce the surface quenching effect of luminescent materials, which becomes an effective method to enhance upconversion luminescence. In this work, a series of NaLnF4@NaLnF4 (Ln = Y3+, Yb3+, Ho3+) core-shell microcrystals is successfully synthesized based on epitaxial growth technology, thereby enhancing and regulating the upconversion emission of Ho3+ ions. The results of the XRD and SEM indicate that the NaLnF4@NaLnF4 core-shell microcrystal possesses a pure hexagonal-phase crystal structure with a rod-like shape. Meanwhile, it is found that the epitaxial growth direction of the micro-shell is not affected by the crystal characteristics in the core, but determined by the crystal characteristics of the shell. Under 980 nm near-infrared laser excitation, the upconversion luminescence properties of single microrods with different core-shell structures are investigated via a confocal microscope spectroscopy. It is found that in the NaLnF4 micro-crystal, the coated NaYF4 inert shell can also effectively reduce the quenching effect on the surface of the micro-crystal for enhancing upconversion emission. When the Yb3+ ions are introduced into NaYF4 or NaYbF4 active shell that is coated, the Yb3+ ions in the shell can effectively transfer excitation energy to Yb3+ in the core through energy migration, and then establish new energy transfer channels, thereby realizing the Ho3+ ion luminescence enhancement. For NaHoF4@NaYbF4 core-shell microrods, the Yb3+ in the shell can transfer more excitation energy to Ho3+ ions at the adjacent interface for enhancing the overall luminescence intensity, and its higher red-green ratio is mainly due to the cross-relaxation process occurring between the Ho3+ ions at high doping concentration of Ho3+ in the NaHoF4 core. Meanwhile, the luminescence process of the micron core-shell system is further confirmed based on the luminescence characteristics of different structures and the dynamic luminescence process. It can be seen that constructing different micron core-shell structures and introducing sensitizing ions, can not only effectively enhance the luminous intensity of the micron materials, but also adjust the output color. Therefore, this research is an important experimental reference for enhancing the luminous intensity of the micron system and the precise adjustment of luminescence, and can effectively expand the applications of micron crystals in the fields of displays, micron lasers and anti-counterfeiting.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 12004303, 62005213), the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2021KJXX-45), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JQ-864), the Key R&D Program of Shaanxi Province, China (Grant Nos. 2020GY-101, 2020GY-127), the Xi’an Science and Technology Innovation Talent Service Enterprise Project, China (Grant Nos. 2020KJRC0107, 2020KJRC0112), and the Postgraduate Innovation Fund Project of Xi’an University of Posts and Telecommunications, China (Grant No. CXJJLZ2019031).
    [1]

    Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotechnol. 10 237Google Scholar

    [2]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar

    [3]

    Park Y I, Lee K T, Suh Y D, Hyeon T H 2015 Chem. Soc. Rev. 44 1302Google Scholar

    [4]

    Zheng W, Huang P, Tu D T, Ma E, Zhu H M, Chen X Y 2015 Chem. Soc. Rev. 44 1379Google Scholar

    [5]

    Wang J, Wei T, Li X Y, Zhang B H, Wang J X, Huang C, Yuan Q 2014 Angew. Chem. 126 1642Google Scholar

    [6]

    Wang Y H, Ohwaki. J 1993 Appl. Phys. Lett. 63 3268Google Scholar

    [7]

    Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar

    [8]

    Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849Google Scholar

    [9]

    Wang Y D, Yang Z W, Ma Y J, Chai Z Z, Qiu J B, Song Z G 2017 J. Mater. Chem. C 5 8535Google Scholar

    [10]

    Dong J, Gao W, Han Q Y, Wang Y K, Qi J X, Yan X W, Sun M T 2019 Rev. Phys. 4 100026Google Scholar

    [11]

    Tian Q, Tao K, Sun K 2013 Micro Nano Lett. 8 731Google Scholar

    [12]

    Homann C, Krukewitt L, Frenzel F, Grauel B, Würth C, Resch-Genger U, Haase M 2018 Angew. Chem. Int. Ed. 57 8765Google Scholar

    [13]

    Choi J E, Kim D, Jang H S 2019 Chem. Commun. 55 2261Google Scholar

    [14]

    Ju D D, Song F, Han Y D, Zhang J, Song F F, Zhou A H, Huang W, Zadkov V 2019 J. Alloy. Compd. 787 1120Google Scholar

    [15]

    Jiao X F, Ye W H, Huang Q Y, Luo J, Yu L L, Liu X T 2020 J. Rare Earth 38 697Google Scholar

    [16]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloy. Compd. 857 157578Google Scholar

    [17]

    Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343Google Scholar

    [18]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 CrystEngComm. 16 6697Google Scholar

    [19]

    高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军 2020 物理学报 69 034207Google Scholar

    Gao W, Wang B Y, Sun Z Y, Gao L, Zhang C X, Han Q Y, Dong J 2020 Acta Phys Sin 69 034207Google Scholar

    [20]

    Gao D L, Zhang X Y, Gao W, 2013 ACS Appl. Mat. Inter. 5 9732Google Scholar

    [21]

    Zhang Y H, Huang L, Liu X G 2016 Angew. Chem. Int. Ed. 55 5718Google Scholar

    [22]

    Chen B, Sun T Y, Qiao X S, Fan X P, Wang F 2015 Adv. Opt. Mater. 3 1577Google Scholar

    [23]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269

    [24]

    Zhang Y H, Huang L, Liu X G, 2016 Angew. Chem. 128 5812Google Scholar

    [25]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 物理学报 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

    [26]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [27]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

    [28]

    Pilch A, Würth C, Kaiser M, Wawrzyńczyk D, Kurnatowska M, Arabasz S, Prorok K, Samoć M, Strek W, Resch-Genger U, Bednarkiewicz A 2017 Small 13 1701635Google Scholar

    [29]

    Gao W, Kong X Q, HanQ Y, ChenY, ZhangJ, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [30]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J, 2013 J. Alloy. Compd. 554 395Google Scholar

    [31]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P, 2011 CrystEngComm 13 3782Google Scholar

    [32]

    Jiang Y F, Shen R S, Li X P, Zhang J S, Zhong H, Tian Y, Sun J S, Cheng L H, Zhong H Y, Chen B J 2012 Ceram. Int. 38 5045Google Scholar

    [33]

    Auzel F 2004 Chem. Rev 104 139Google Scholar

  • 图 1  NaYF4:20%Yb3+/2%Ho3+与NaHoF4微米晶体及其相应核壳结构的XRD图谱

    Figure 1.  The XRD patterns of NaYF4:20%Yb3+/2%Ho3+ microcrystals and NaHoF4 microcrystals with corresponding core-shell (CS) microcrystals.

    图 2  (a)—(f) NaYF4:20%Yb3+ /2%Ho3+ 及(a1)—(c1) NaHoF4包覆不同壳层结构微米棒的SEM及其相应的mapping图

    Figure 2.  The SEM images and element mappings of Y, Yb, Ho of (a)–(f) NaYF4: 20%Yb3+ /2%Ho3+ microrods and (a1)–(c1) NaHoF4 microrods with corresponding CS microrods.

    图 3  共聚焦显微光谱测试装置示意图(M1, M2, 半透半反镜; L1, L2, 透镜)

    Figure 3.  Schematic illustration of confocal microscopy setup (M1, M2, semi-transparent and semi-reflective mirrors; L1, L2, lenses).

    图 4  在980 nm激发下, 单个NaYF4:20%Yb3+/2%Ho3+及其核壳微米棒的(a)上转换发射光谱, (b)蓝光、绿光和红光的发射峰面积, (c)红绿比和(d) CIE 色度坐标图

    Figure 4.  (a) The UC emission spectra, (b) the peak area of the bule, green and red emission intensity, (c) R/G ratio and (d) CIE chromaticity diagram of the single NaYF4:20%Yb3+/2%Ho3+ microrod with corresponding CS microrod under the excitation of a 980 nm near-infrared (NIR) laser.

    图 5  在980 nm激光激发下, (a) 单颗粒NaYbF4:2%Ho3+ 和(b) NaHoF4微米棒及其相应核壳微米棒的上转换(UC)发射光谱(插图为其相应的红绿比及发光照片)

    Figure 5.  The UC emission spectra of the single (a) NaYbF4:2%Ho3+ and (b) NaHoF4 microrod with corresponding CS microrod under the excitation of a 980 nm NIR laser (The insert is corresponding optical micrographs and R/G ratio).

    图 6  在980 nm激光激发下, Ho3+离子与Yb3+离子在不同核壳微米结构中的能量传递与其可能的辐射及无辐射跃迁过程 (a) NaYF4:20%Yb3+/2%Ho3+@NaYF4微米核壳结构; (b) NaHoF4@NaYbF4 微米核壳结构

    Figure 6.  Possible energy transfer, radiation and no-radiation processes between Yb3+ and Ho3+, in the (a) NaYF4:20%Yb3+/2%Ho3+@NaYF4 and (b) NaHoF4@NaYbF4 CS structures

    图 7  单颗粒微米棒与泵浦功率的依赖关系 (a), (b) NaYF4:20%Yb3+/2%Ho3+微米棒; (c), (d) NaYF4:20%Yb3+/2%Ho3+@NaYF4:40%Yb3+核壳微米棒; (e), (f) NaYbF4:2%Ho3+@NaYF4核壳微米棒

    Figure 7.  Pump power dependences of the single-particle microrod: (a), (b) NaYF4:20%Yb3+/2%Ho3+ microrod; (c), (d) NaYF4:20%Yb3+/2%Ho3+@NaYF4 CS microrod; (e), (f) NaYbF4:2%Ho3+@NaYF4 CS microrod.

    图 8  在 980 nm脉冲激光激发下, 不同的(a), (b) NaYF4及(c), (d) NaHoF4核壳微米棒中Ho3+离子5F5能级(b), (d)及其5S2能级(a), (c)的辐射衰减寿命曲线图

    Figure 8.  Decay curves of the (b), (d) 5F5 and (a), (c) 5S2 levels in (a), (b) NaYF4 and (c), (d) NaHoF4 microrod with corresponding CS microrods under the excitation of a 980 nm NIR pulse laser.

    表 1  水热法制备微米晶体所需药品的详细参数

    Table 1.  Detailed parameters of the chemical reagents required for the preparation of microcrystals by hydrothermal method.

    样品EDTA
    /g
    RE(NO3)3/
    mmol
    NaF/
    mmol
    NH4HF2/mmol
    NaYF4:20%Yb3+/
    2%Ho3+
    0.2820.752.53
    NaYbF4:2%Ho3+0.2820.752.53
    NaHoF40.2820.752.53
    DownLoad: CSV

    表 2  水热法制备微米核壳晶体的所需药品的详细参数

    Table 2.  Detailed parameters of the chemical reagents required for the preparation of the core-shell microcrystal by hydrothermal method.

    样品Seed crystals quality/gEDTA/mmolRE(NO3)3/mmolNaF/mmolNH4HF2/mmol
    NaYF4:20%Yb3+/2%Ho3+@NaYF40.14940.750.752.53
    NaYF4:20%Yb3+/2%Ho3+@NaYbF40.14940.750.752.53
    NaYbF4:2%Ho3+@NaYF40.12280.750.502.53
    NaHoF4@NaYF40.19950.750.752.53
    NaHoF4@NaYF4:20%Yb3+0.19950.750.752.53
    NaHoF4@NaYbF40.19950.750.752.53
    DownLoad: CSV

    表 3  在980 nm 脉冲激发光下, NaYF4与NaHoF4核壳微米棒核壳纳米晶体中的Ho3+离子5F5能级及5S2能级的辐射寿命值

    Table 3.  Luminescence lifetimes of the 5F5 and 5S2 levels in NaYF4 and NaHoF4 microrod with corresponding CS microrods under the excitation of a 980 nm NIR pulse laser.

    SamplesLifetime/μs
    5S2: 541 nm5F5: 645 nm
    NaYF4:20%Yb3+/2%Ho3+201.3367.7
    NaYF4:20%Yb3+/2%Ho3+@
    NaYF4
    298.6445.1
    NaYF4:20%Yb3+/2%Ho3+@
    NaYF4:20%Yb3+
    380.4529.3
    NaYF4:20%Yb3+/2%Ho3+@
    NaYF4:40%Yb3+
    472.3682.1
    NaYF4:20%Yb3+/2%Ho3+@
    NaYF4:80%Yb3+
    416.5573.4
    NaHoF4@NaYF4:20%Yb3+167.4247.3
    NaHoF4@NaYbF4236.6318.6
    DownLoad: CSV
  • [1]

    Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotechnol. 10 237Google Scholar

    [2]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar

    [3]

    Park Y I, Lee K T, Suh Y D, Hyeon T H 2015 Chem. Soc. Rev. 44 1302Google Scholar

    [4]

    Zheng W, Huang P, Tu D T, Ma E, Zhu H M, Chen X Y 2015 Chem. Soc. Rev. 44 1379Google Scholar

    [5]

    Wang J, Wei T, Li X Y, Zhang B H, Wang J X, Huang C, Yuan Q 2014 Angew. Chem. 126 1642Google Scholar

    [6]

    Wang Y H, Ohwaki. J 1993 Appl. Phys. Lett. 63 3268Google Scholar

    [7]

    Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar

    [8]

    Su Q Q, Han S Y, Xie X J, Zhu H M, Chen H Y, Chen C K, Liu R S, Chen X Y, Wang F, Liu X G 2012 J. Am. Chem. Soc. 134 20849Google Scholar

    [9]

    Wang Y D, Yang Z W, Ma Y J, Chai Z Z, Qiu J B, Song Z G 2017 J. Mater. Chem. C 5 8535Google Scholar

    [10]

    Dong J, Gao W, Han Q Y, Wang Y K, Qi J X, Yan X W, Sun M T 2019 Rev. Phys. 4 100026Google Scholar

    [11]

    Tian Q, Tao K, Sun K 2013 Micro Nano Lett. 8 731Google Scholar

    [12]

    Homann C, Krukewitt L, Frenzel F, Grauel B, Würth C, Resch-Genger U, Haase M 2018 Angew. Chem. Int. Ed. 57 8765Google Scholar

    [13]

    Choi J E, Kim D, Jang H S 2019 Chem. Commun. 55 2261Google Scholar

    [14]

    Ju D D, Song F, Han Y D, Zhang J, Song F F, Zhou A H, Huang W, Zadkov V 2019 J. Alloy. Compd. 787 1120Google Scholar

    [15]

    Jiao X F, Ye W H, Huang Q Y, Luo J, Yu L L, Liu X T 2020 J. Rare Earth 38 697Google Scholar

    [16]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloy. Compd. 857 157578Google Scholar

    [17]

    Gai S L, Li C X, Yang P P, Lin J 2014 Chem. Rev. 114 2343Google Scholar

    [18]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 CrystEngComm. 16 6697Google Scholar

    [19]

    高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军 2020 物理学报 69 034207Google Scholar

    Gao W, Wang B Y, Sun Z Y, Gao L, Zhang C X, Han Q Y, Dong J 2020 Acta Phys Sin 69 034207Google Scholar

    [20]

    Gao D L, Zhang X Y, Gao W, 2013 ACS Appl. Mat. Inter. 5 9732Google Scholar

    [21]

    Zhang Y H, Huang L, Liu X G 2016 Angew. Chem. Int. Ed. 55 5718Google Scholar

    [22]

    Chen B, Sun T Y, Qiao X S, Fan X P, Wang F 2015 Adv. Opt. Mater. 3 1577Google Scholar

    [23]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269

    [24]

    Zhang Y H, Huang L, Liu X G, 2016 Angew. Chem. 128 5812Google Scholar

    [25]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 物理学报 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

    [26]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [27]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

    [28]

    Pilch A, Würth C, Kaiser M, Wawrzyńczyk D, Kurnatowska M, Arabasz S, Prorok K, Samoć M, Strek W, Resch-Genger U, Bednarkiewicz A 2017 Small 13 1701635Google Scholar

    [29]

    Gao W, Kong X Q, HanQ Y, ChenY, ZhangJ, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [30]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J, 2013 J. Alloy. Compd. 554 395Google Scholar

    [31]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P, 2011 CrystEngComm 13 3782Google Scholar

    [32]

    Jiang Y F, Shen R S, Li X P, Zhang J S, Zhong H, Tian Y, Sun J S, Cheng L H, Zhong H Y, Chen B J 2012 Ceram. Int. 38 5045Google Scholar

    [33]

    Auzel F 2004 Chem. Rev 104 139Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun. Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal. Acta Physica Sinica, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [3] Gao Wei, Shao Lin, Han Shan-Shan, Xing Yu, Zhang Jing-Jing, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Upconversion white-light emission luminescence characteristics based on single-particle NaYF4 microrod. Acta Physica Sinica, 2023, 72(2): 024207. doi: 10.7498/aps.72.20221606
    [4] Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Energy transfer characteristics of single-particle NaYF4 core-shell structure. Acta Physica Sinica, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [5] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [6] Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun. Tuning upconversion emissions of Ho3+ through changing excitation conditions. Acta Physica Sinica, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [7] Su Xiao-Na, Wan Ying, Zhou Zhi-Xuan, TushaguAbuduwufu, Hu Lian-Lian, AierkenSidike. Luminescence properties and energy transfer of Na2CaSiO4:Sm3+, Eu3+ phosphor. Acta Physica Sinica, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [8] Xiong Xiao-Bo, Liu Wan-Li, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi, Liang Yu-Jun. Photoluminescence properties and energy transfer of SrZn2(PO4)2:Sn2+, Mn2+ phosphor. Acta Physica Sinica, 2015, 64(24): 247801. doi: 10.7498/aps.64.247801
    [9] Xiong Xiao-Bo, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi. Photoluminescence properties and energy transfer from Ce3+ to Mn2+ in Na2SrMg(PO4)2. Acta Physica Sinica, 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [10] Mi Rui-Yu, Xia Zhi-Guo, Liu Hai-Kun. Luminescent properties and energy transfer in Ca4Y6 (SiO4)6F2: Ce3+, Mn2+ phosphor. Acta Physica Sinica, 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [11] Shen Ying-Long, Tang Chun-Mei, Sheng Qiu-Chun, Liu Shuang, Li Wen-Tao, Wang Long-Fei, Chen Dan-Ping. Spectroscopic properties and energy transfer of Ce3+/Eu2+ codoped oxide glasses with high Gd2O3 concentration. Acta Physica Sinica, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [12] Bi Chang-Hong, Meng Qing-Yu. Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors. Acta Physica Sinica, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [13] Zhong Rui-Xia, Zhang Jia-Hua, Li Ming-Ya, Wang Xiao-Qiang. Luminescent properties and energy transfer in MAl12O19: Eu2+, Cr3+ (M = Ca, Sr, Ba). Acta Physica Sinica, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [14] Yang Zhi-Ping, Yang Guang-Wei, Wang Shao-Li, Tian Jing, Li Pan-Lai, Li Xu. Luminescence and energy transfer of Eu2+, Mn2+ in BaZnP2O7. Acta Physica Sinica, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [15] Shi Dong-Mei, Zhang Qin-Yuan, Yang Gang-Feng, Jiang Zhong-Hong. Spectroscopic properties and energy transfer of Tm3+/Ho3+-codoped Ga2O3-Bi2O3-GeO2-PbO-PbF2 glasses for 1.47μm luminecence. Acta Physica Sinica, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [16] Chen Gan-Xin, Zhang Qin-Yuan, Yang Gang-Feng, Yang Zhong-Min, Jiang Zhong-Hong. 2.0 μm emission properties and energy transfer of Tm3+/Ho3+-codoped tellurite glass. Acta Physica Sinica, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [17] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] Sun Shi-Ju, Teng Feng, Xu Zheng, Zhang Yan-Fen, Hou Yan-Bing. Luminescence properties and energy transfer in the mixed thin film of Alq3 and PVK. Acta Physica Sinica, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] WANG DIAN-YUAN, XIE PING-BO, ZHANG WEI-PING, LOU LI-REN, XIA SHANG-DA. A STUDY ON ENERGY TRANSFER AND ENERGY MIGRATION MODELS FOR RE IONS LUMINESCENCE SYSTEM. Acta Physica Sinica, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
Metrics
  • Abstract views:  5708
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2021
  • Accepted Date:  08 October 2021
  • Available Online:  23 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回