-
The graphene and nanoparticles composites have novel optical and electrical properties. They are widely used in the fields of information sensing, photoelectric conversion and medical diagnosis. Graphene has excellent photoelectric properties and can regulate the random laser properties, but the current composite process of graphene with special structures and metal nanostructures is complicated. Thus, there is still a challenge to effectively reducing the threshold of random laser by using graphene. In this work, the Au/graphene structure is prepared by convenient chemical reduction and adsorption method, and the dye DCJTB is used as the gain medium to form the film by spin coating. The random laser properties of Au nanoparticles and Au/graphene structure are studied, and the mechanism of graphene is analyzed. The results show that the transmission peak of Au/graphene composite is near the photoluminescence peak of gain medium, which promotes the energy level transition of dye molecules. With the addition of graphene into the same gain medium, the scattering frequency of photons in the disordered medium increases, resulting in the enhancement of surface plasmon resonance. The scattering effect and the surface plasmon resonance effect cooperate with each other, showing good random laser threshold, which is reduced from 3.4 μJ/mm2 to 2.8 μJ/mm2. Repeatability and high quality of maser are obtained by repetitively measuring the same sample, showing that the lasing sample has good repeatability and high quality. This study plays a certain role in promoting the application of random laser and realizing the high-performance optoelectronic devices.
-
Keywords:
- random laser /
- surface plasmon resonance /
- graphene /
- Au nanoparticles
[1] Soest G V, Lagendijk A 2002 Phys. Rev. E 65 047601Google Scholar
[2] Soest G V, Poelwijk F J, Lagendijk A 2002 Phys. Rev. E 65 046603Google Scholar
[3] Wang Y, Duan Z J, Qiu Z, Zhang P, Wu J W, Zhang D K, Xiang T X 2017 Sci. Rep. 7 8385Google Scholar
[4] Chen H, Gao S H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao F, Hu X X, Li S C, Zhu Y C 2020 Sensors 20 6122Google Scholar
[5] Wiersma, Diederik S 2008 Nat. Phys. 4 359Google Scholar
[6] Rashidi M, Haggren T, Su Z, Jagadish C, Tan H H 2021 Nano. Lett. 21 3901Google Scholar
[7] Siva G V, Nair R V, Krishnan S R, Vijayan C 2017 Opt. Lett. 42 5002Google Scholar
[8] Haddaw S F, Humud H R, Hamidi S M 2020 Optik 207 164482Google Scholar
[9] Xia J Y, He J J, Xie K, Zhang X J, Hu L, Li Y, Chen X X, Ma J J, Wen J X, Chen J J, Pan Q S, Zhang J X, Vatnik I D, Churkin D, Hu Z J 2019 Annalen der Physik 531 1900066Google Scholar
[10] Li Y X, Xie K, Zhang X J, Hu Z J, Ma J J, Chen X X, Zhang J X, Liu Z M, Chen D 2020 Photonic. Sens. 10 254Google Scholar
[11] Chen Z X, Zhang Y J, Chu S, Sun R, Wang J, Chen J P, Wei B, Zhang X, Zhou W H, Shi Y M 2020 ACS Appl. Mater. Interfaces 12 23323Google Scholar
[12] Yuan F L, Xi Z F, Shi X Y, Li Y C, Li X H, Wang Z N, Fa L Z, Yang S H 2019 Adv. Opt. Mater. 7 1801202Google Scholar
[13] Gayathri R, Monika K, Murukeshan V M, Vijayan C 2021 Opt. Laser. Technol. 139 106959Google Scholar
[14] Shi X Y, Bian Y X, Tong J H, Liu D H, Zhou J, Wang Z N 2020 Opt. Express 28 13576Google Scholar
[15] Wan Y, Deng L G 2019 Opt. Express 27 27103Google Scholar
[16] Shi X Y, Chang Q, Bian Y X, Cui H B, Wang Z N 2019 ACS Photonics 6 2245Google Scholar
[17] Wan Y, An Y, Deng L G 2017 Sci. Rep. 7 16185Google Scholar
[18] Zhang R, Knitter S, Liew S F, Omenetto F G, Reinhard B M, Cao H, Negro D L 2016 Appl. Phys. Lett. 108 011103Google Scholar
[19] Long L, He D, Bao W, Feng M, Chen S 2017 J. Alloys. Compd. 693 876Google Scholar
[20] Zhai T, Zhang X, Pang Z, Su X, Liu H, Feng S, Wang L 2011 Nano. Lett. 11 4295Google Scholar
[21] Zhang N M, Ning S Y, Dai K, Zhang Y F, Wu Y, Yuan F, Zhang F H 2020 Opt. Mater. Express 10 1204Google Scholar
[22] Marini A, Garcia D A F J 2016 Phys. Rev. Lett. 116 217401Google Scholar
[23] Pradip K R, Golam H, Lin H, Liao Y M, Lu C H, Chen K H, Chen L H, Shi W H, Liang C T, Chen Y F 2018 Adv. Opt. Mater. 6 1800382Google Scholar
[24] Lee J, Kim J, Ahmed S R, Zhou H 2014 ACS Appl. Mater. Interfaces 6 21380Google Scholar
[25] Shi J Y, Chan C Y, Pang Y T, Ye W W, Tian F, Jing L Y, Zhang Y, Yang M 2015 Biosens. Bioelectron. 67 595Google Scholar
[26] Lü H, Lan Y Y, Zhao Q L, Wang X, Zhang S Y, Teng L H, Tam W Y 2018 Appl. Phys. B 124 227Google Scholar
[27] Ma H R, Lü H, Wang X 2020 Optik 223 165567Google Scholar
[28] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim R T, Song Y 2010 Nat. Nanotechnol. 5 574Google Scholar
[29] Shen T, Li Z, Jiang Y, Luo Z G 2019 Funct. Mater. Lett. 12 1950028Google Scholar
[30] Ning S, Dong H, Zhang N, Zhao J, Ding L 2016 Opt. Mater. Express 6 3725Google Scholar
[31] Tao A, Sinsermsuksakul P, Yang P D 2007 Nat. Nanotechnol. 2 435Google Scholar
[32] Zhang Z Y, Liu L H, Wang W, Cao Z J, Martinelli A, Wang E G, Cao Y, Chen J N, Yurgens A, Sun J 2016 Adv. Opt. Mater. 4 2021Google Scholar
-
图 3 (a) Au纳米颗粒的TEM图; (b) Au纳米颗粒的粒径分布统计图; (c) Au/石墨烯的TEM图; (d) Au纳米颗粒和Au/石墨烯的透射光谱以及DCJTB染料光致发光光谱
Figure 3. (a) TEM images of Au NPs; (b) the corresponding size distribution of Au NPs; (c) TEM images of Au/Graphene; (d) transmission spectra of Au NPs, Au/Graphene and photoluminescence spectra of DCJTB.
-
[1] Soest G V, Lagendijk A 2002 Phys. Rev. E 65 047601Google Scholar
[2] Soest G V, Poelwijk F J, Lagendijk A 2002 Phys. Rev. E 65 046603Google Scholar
[3] Wang Y, Duan Z J, Qiu Z, Zhang P, Wu J W, Zhang D K, Xiang T X 2017 Sci. Rep. 7 8385Google Scholar
[4] Chen H, Gao S H, Zhang M J, Zhang J Z, Qiao L J, Wang T, Gao F, Hu X X, Li S C, Zhu Y C 2020 Sensors 20 6122Google Scholar
[5] Wiersma, Diederik S 2008 Nat. Phys. 4 359Google Scholar
[6] Rashidi M, Haggren T, Su Z, Jagadish C, Tan H H 2021 Nano. Lett. 21 3901Google Scholar
[7] Siva G V, Nair R V, Krishnan S R, Vijayan C 2017 Opt. Lett. 42 5002Google Scholar
[8] Haddaw S F, Humud H R, Hamidi S M 2020 Optik 207 164482Google Scholar
[9] Xia J Y, He J J, Xie K, Zhang X J, Hu L, Li Y, Chen X X, Ma J J, Wen J X, Chen J J, Pan Q S, Zhang J X, Vatnik I D, Churkin D, Hu Z J 2019 Annalen der Physik 531 1900066Google Scholar
[10] Li Y X, Xie K, Zhang X J, Hu Z J, Ma J J, Chen X X, Zhang J X, Liu Z M, Chen D 2020 Photonic. Sens. 10 254Google Scholar
[11] Chen Z X, Zhang Y J, Chu S, Sun R, Wang J, Chen J P, Wei B, Zhang X, Zhou W H, Shi Y M 2020 ACS Appl. Mater. Interfaces 12 23323Google Scholar
[12] Yuan F L, Xi Z F, Shi X Y, Li Y C, Li X H, Wang Z N, Fa L Z, Yang S H 2019 Adv. Opt. Mater. 7 1801202Google Scholar
[13] Gayathri R, Monika K, Murukeshan V M, Vijayan C 2021 Opt. Laser. Technol. 139 106959Google Scholar
[14] Shi X Y, Bian Y X, Tong J H, Liu D H, Zhou J, Wang Z N 2020 Opt. Express 28 13576Google Scholar
[15] Wan Y, Deng L G 2019 Opt. Express 27 27103Google Scholar
[16] Shi X Y, Chang Q, Bian Y X, Cui H B, Wang Z N 2019 ACS Photonics 6 2245Google Scholar
[17] Wan Y, An Y, Deng L G 2017 Sci. Rep. 7 16185Google Scholar
[18] Zhang R, Knitter S, Liew S F, Omenetto F G, Reinhard B M, Cao H, Negro D L 2016 Appl. Phys. Lett. 108 011103Google Scholar
[19] Long L, He D, Bao W, Feng M, Chen S 2017 J. Alloys. Compd. 693 876Google Scholar
[20] Zhai T, Zhang X, Pang Z, Su X, Liu H, Feng S, Wang L 2011 Nano. Lett. 11 4295Google Scholar
[21] Zhang N M, Ning S Y, Dai K, Zhang Y F, Wu Y, Yuan F, Zhang F H 2020 Opt. Mater. Express 10 1204Google Scholar
[22] Marini A, Garcia D A F J 2016 Phys. Rev. Lett. 116 217401Google Scholar
[23] Pradip K R, Golam H, Lin H, Liao Y M, Lu C H, Chen K H, Chen L H, Shi W H, Liang C T, Chen Y F 2018 Adv. Opt. Mater. 6 1800382Google Scholar
[24] Lee J, Kim J, Ahmed S R, Zhou H 2014 ACS Appl. Mater. Interfaces 6 21380Google Scholar
[25] Shi J Y, Chan C Y, Pang Y T, Ye W W, Tian F, Jing L Y, Zhang Y, Yang M 2015 Biosens. Bioelectron. 67 595Google Scholar
[26] Lü H, Lan Y Y, Zhao Q L, Wang X, Zhang S Y, Teng L H, Tam W Y 2018 Appl. Phys. B 124 227Google Scholar
[27] Ma H R, Lü H, Wang X 2020 Optik 223 165567Google Scholar
[28] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim R T, Song Y 2010 Nat. Nanotechnol. 5 574Google Scholar
[29] Shen T, Li Z, Jiang Y, Luo Z G 2019 Funct. Mater. Lett. 12 1950028Google Scholar
[30] Ning S, Dong H, Zhang N, Zhao J, Ding L 2016 Opt. Mater. Express 6 3725Google Scholar
[31] Tao A, Sinsermsuksakul P, Yang P D 2007 Nat. Nanotechnol. 2 435Google Scholar
[32] Zhang Z Y, Liu L H, Wang W, Cao Z J, Martinelli A, Wang E G, Cao Y, Chen J N, Yurgens A, Sun J 2016 Adv. Opt. Mater. 4 2021Google Scholar
Catalog
Metrics
- Abstract views: 6585
- PDF Downloads: 97
- Cited By: 0