Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy transfer characteristics of single-particle NaYF4 core-shell structure

Gao Wei Zhang Jing-Jing Han Shan-Shan Xing Yu Shao Lin Chen Bin-Hui Han Qing-Yan Yan Xue-Wen Zhang Cheng-Yun Dong Jun

Citation:

Energy transfer characteristics of single-particle NaYF4 core-shell structure

Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun
PDF
HTML
Get Citation
  • The rare-earth doped micro/nano core-shell structure not only is beneficial to enhancing the upconversion emission intensity, but also can realize the fine control of luminescence color through the spatial separation of ions. In this work, a series of NaYF4@NaYF4 core-shell (CS) microcrystals doped with different ion concentrations is constructed by using the epitaxial growth technology. The structure and morphology for each of the prepared microcrystals are characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The experimental results show that the prepared CS structures each have a pure hexagonal-phase crystal structure, and exhibit a disk-like shape. Under the excitation of 980 nm laser, the energy transfer characteristics of doped ions in single CS microcrystal are carefully studied by using a confocal microscope spectroscopy test system and changing the excitation position. The study shows that the ions doped in different regions of the CS microdisks exhibit different spectral characteristics when the excitation position is changed, which is mainly due to the different directions of excitation energy transfer in the CS structure. Based on the emission spectra of different positions and power variation spectra, it is proved that the excitation energy of the micron CS is mainly transmitted from outside to inside. Meanwhile, the colorful emission pattern of the CS microdisk is revealed by the corresponding optical waveguide model, which is mainly due to the optical waveguide effect. Therefore, by constructing different micron core-shell structures, the luminescence characteristics of microcrystals can be controlled and adjusted, which can provide important experimental reference for the applications of microcrystals in optoelectronic devices, optical coding and multicolor display.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 12004304, 12104366 ), the Key R & D Program of Shaanxi Province, China (Grant No. 2022SF-333), the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2021KJXX-45), the Key Program of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JZ-05), the Young Scientists Fund of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JQ-041), and the Postgraduate Innovation Fund Project of Xi’an University of Posts and Telecommunications, China (Grant No. CXJJDL2021002).
    [1]

    Gnach A, Bednarkiewicz A 2012 Nano Today 7 532Google Scholar

    [2]

    Bettinelli M, Carlos L, Liu X G 2015 Phys. Today 68 38

    [3]

    Mandl G A, Cooper D R, Hirsch T, Seuntjens J, Capobianco J A 2019 Methods Appl. Fluoresc. 7 012004Google Scholar

    [4]

    Zhang H X, Chen Z H, Liu X, Zhang F 2020 J. Nano Res. 13 1795Google Scholar

    [5]

    Han Q Y, Zhao B C, Gao W, Li Y X, Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys. 24 13730Google Scholar

    [6]

    Xiang Y, Zheng S S, Yuan S S, Wang J, Wu Y H, Zhu X H 2022 Mikrochim. Acta 189 120Google Scholar

    [7]

    Li Y, Chen C, Liu F F, Liu J L 2022 Mikrochim. Acta 189 109Google Scholar

    [8]

    Xu M M, Ge W Y, Zhang X M, Li Y X 2022 Opt. Laser Technol. 145 107529Google Scholar

    [9]

    Alkahtani M, Almuqhim A A, Qasem H, Alsofyani N, Alfahd A, Alenzi S M, Aljuwayr A, Alzahrani Y A, Al-Badri A, Alotaibi M H, Bagabas A, AlHazaa A N, Hemmer P R 2021 Nanomaterials 11 2909Google Scholar

    [10]

    Liu B T, Huang T H, Wang T L, Hsu C C 2021 Sol Energy 227 1Google Scholar

    [11]

    Dong H, Sun L D, Yan C H 2021 J. Am. Chem. Soc. 143 20546Google Scholar

    [12]

    Wang J, Sun X Y, Han Y D, Cheng Z Z, Liu T G 2021 Opt. Commun. 483 126663Google Scholar

    [13]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 物理学报 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

    [14]

    Wang Y, Low J X, Bi Y F, Bai Y, Jiang Y W, Wang H H, Liu W Y, Ma Y Q, Chen Y N, Long R, Xiong Y J 2022 Chin. Chem. Lett. 33 1087Google Scholar

    [15]

    Jia H, Li D G, Zhang D, Dong Y H, Ma S T, Zhou M, Di W H, Qin W P 2021 ACS Appl. Mater. Inter. 13 4402Google Scholar

    [16]

    Chen T, Hao S W, Azimbay A, Shang Y F, Pi Q L, Hou Y D, Yang C H 2019 J. Power Sources 430 43Google Scholar

    [17]

    Jiao X F, Ye W H, Huang Q Y, Luo G, Yu L L, Liu X T 2020 J. Rare Earths 38 697Google Scholar

    [18]

    Ju D D, Gao X L, Zhang S C, Li Y, Cui W J, Yang Y H, Luo M Y, Liu S J 2021 CrystEngComm 23 3892Google Scholar

    [19]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compd. 857 157578Google Scholar

    [20]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [21]

    Felsted R G, Pant A, Bard A B, Xia X J, Luntz-Martin D R, Dadras S, Zhang S, Vamivakas A N, Pauzauskie P J 2022 Cryst. Growth Des. 22 3605Google Scholar

    [22]

    Zhang Y H, Huang L, Liu X G 2016 Angew. Chem. Int. Ed. 55 5718Google Scholar

    [23]

    He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater Res Bull. 121 110613

    [24]

    Yang D D, Peng Z X, Zhan Q Q, Huang X J, Peng X Y, Guo X, Dong G P, Qiu J R 2019 Small 15 1904298Google Scholar

    [25]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan W, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl. Phys. Lett. 118 173301Google Scholar

    [26]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001Google Scholar

    [27]

    Wu Y F S, Lai F Q, Liu B, Li Z B, Liang T X, Qiang Y C, Huang J H, Ye X Y, You W X 2020 J. Rare Earths 38 130Google Scholar

    [28]

    Yan L, Zhou B, Song N, Liu X L, Huang J S, Wang T, Tao L L, Zhang Q Y 2018 Nanoscale 10 17949Google Scholar

    [29]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdia A, Zhao S L 2022 J. Alloys Compd. 891 162067Google Scholar

    [30]

    赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖 2019 物理学报 68 213301Google Scholar

    Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z, Xu S, Cheng L H, Chen B J 2019 Acta Phys. Sin. 68 213301Google Scholar

    [31]

    张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 084203Google Scholar

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 084203Google Scholar

    [32]

    高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 034207Google Scholar

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207Google Scholar

    [33]

    Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P, Lin J 2019 Chem. Mater. 31 7898Google Scholar

    [34]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloys Compd. 818 152934Google Scholar

    [35]

    Gao D L, Wang D, Zhang X Y, Feng X J, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622Google Scholar

  • 图 1  微/纳米晶体借助核壳结构实现上转换发射的模型示意图

    Figure 1.  Model schematic diagram of micro/nanocrystals up-conversion (UC) emission via core-shell (CS) structure.

    图 2  NaYF4:20%Yb3+/2%Tm3+微米晶体及其包覆不同核壳结构的XRD图谱

    Figure 2.  The XRD patterns of NaYF4:20%Yb3+ /2%Tm3+ microcrystals and their coating with different CS structures.

    图 3  NaYF4:20%Yb3+/2%Tm3+微米晶体及包覆不同核壳结构的SEM及其相应的元素映射图 (a) NaYF4:20%Yb3+/2%Tm3+; (b) NaYF4:20%Yb3+/2%Tm3+ @ NaYF4:20%Yb3+/2%Er3+; (c) NaYF4:20%Yb3+/2%Tm3+ @ NaYF4:20%Yb3+/2%Er3+@ NaYbF4

    Figure 3.  The SEM images and element mappings of NaYF4:20%Yb3+/2%Tm3+ microcrystals with corresponding CS structures: (a) NaYF4:20%Yb3+/2%Tm3+; (b) NaYF4:20%Yb3+/2%Tm3+ @ NaYF4:20%Yb3+/2%Er3+; (c) NaYF4:20%Yb3+/2%Tm3+ @ NaYF4:20%Yb3+/2%Er3+@ NaYbF4.

    图 4  共聚焦显微光谱测试系统示意图

    Figure 4.  Schematic diagram of the confocal microscope spectroscopic test system.

    图 5  在980 nm激发下, 单个NaYF4:20%Yb3+/2%Tm3+@NaYF4:20%Yb3+/2%Er3+核壳微米盘在不同激发位置的 (a)上转换发射光谱(插图为不同激发位置下对应的发光照片), (b)蓝光、绿光和红光的发射峰面积, (c)增强倍数和(d)红绿比和红蓝比

    Figure 5.  (a) The UC emission spectra (The insert is corresponding optical micrographs at different excitation positions), (b) the peak area of the bule, green and red emission intensity, (c) enhancement and (d) R/G ratio and R/B ratio of the single NaYF4:20%Yb3+/2%Tm3+@ NaYF4:20%Yb3+/2%Er3+ CS microdisk at different excitation positions under the excitation of a 980 nm near-infrared (NIR) laser.

    图 6  在980 nm激发下, 单个NaYF4:20%Yb3+/2%Tm3+@NaYF4:20%Yb3+/2%Er3+@NaYbF4核-壳-壳微米盘在不同激发位置的 (a)上转换发射光谱(插图为不同激发位置下对应的发光照片), (b)蓝光、绿光和红光的发射峰面积, (c)增强倍数和(d)红绿比和红蓝比

    Figure 6.  (a) The UC emission spectra (The insert is corresponding optical micrographs at different excitation positions), (b) the peak area of the bule, green and red emission intensity, (c) enhancement and (d) R/G ratio and R/B ratio of the single NaYF4:20%Yb3+/2%Tm3+@ NaYF4:20%Yb3+/2%Er3+@NaYbF4 core-shell-shell (CSS) microdisk at different excitation positions under the excitation of a 980 nm NIR laser.

    图 7  在980 nm激发下, 单个NaYF4:20%Yb3+/2%Tm3+@NaYF4:20%Yb3+/2%Er3+@NaYbF4核-壳-壳微米盘中Yb3+, Tm3+和Er3+离子在不同核壳体系之间所对应的能级图及跃迁机制图(插图为核-壳-壳微米盘的模型, 白点、绿点、蓝点和紫点分别代表Yb3+离子、Er3+离子、Tm3+离子和表面猝灭点)

    Figure 7.  The corresponding energy level diagrams and transition mechanism diagrams of Yb3+, Tm3+ and Er3+ ions between different CS systems in a single NaYF4:20%Yb3+/2%Tm3+@ NaYF4:20%Yb3+/2%Er3+@NaYbF4 CSS microdisk under the excitation of a 980 nm NIR laser. (The inset is a model of a CSS microdisk, and the white, green, blue, and purple dots represent Yb3+ ions, Er3+ ions, Tm3+ ions, and surface quenching points, respectively.)

    图 8  在980 nm不同激发功率下, 单个(a) NaYF4:20%Yb3+/2%Tm3+和(c) NaYF4:20%Yb3+/2%Tm3+@NaYF4:20%Yb3+/2%Er3+微米盘在激发位置d的上转换发射光谱(插图为其对应的发光照片); (b), (d) 其蓝光, 绿光和红光发射强度与泵浦功率间的依赖关系

    Figure 8.  The UC emission spectra of a single (a) NaYF4:20%Yb3+/2%Tm3+ and (c) NaYF4:20%Yb3+/2%Tm3+@NaYF4:20%Yb3+/2%Er3+ microdisk at excitation position d under different excitation powers of a 980 nm NIR laser (The insert is corresponding optical micrographs); (b), (d) the dependence of its blue, green and red emission intensity on pump power.

    图 9  (a)—(d) 在980 nm激发下, 单个NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+@NaYbF4核-壳-壳微米盘分别在激发位置a, b, c, d的发光图案及其光波导模型

    Figure 9.  (a)–(d) The Luminescence patterns and optical waveguide models of a single NaYF4:20%Yb3+/2%Tm3+@NaYF4:20%Yb3+/2%Er3+@NaYbF4 CSS microdisk at excitation positions a, b, c, d respectively under the excitation of a 980 nm NIR laser.

    表 1  水热法制备微米晶体的药品详细参数

    Table 1.  Detailed parameters of medicines for the preparation of microcrystals by hydrothermal method.

    样品核(核/壳)体积/mLm(EDTA-2Na)/gV(RE(NO3)3)/mLV(NaF)
    /mL
    NaYF4:Yb3+/Tm3+0.2821.511.0
    NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+5.00.2821.511.0
    NaYF4:Yb3+/Tm3+@NaYF4:Yb3+/Er3+@NaYbF45.00.2821.511.0
    注: RE(NO3)3和NaF溶液均为0.5 mol/L水溶液.
    DownLoad: CSV
  • [1]

    Gnach A, Bednarkiewicz A 2012 Nano Today 7 532Google Scholar

    [2]

    Bettinelli M, Carlos L, Liu X G 2015 Phys. Today 68 38

    [3]

    Mandl G A, Cooper D R, Hirsch T, Seuntjens J, Capobianco J A 2019 Methods Appl. Fluoresc. 7 012004Google Scholar

    [4]

    Zhang H X, Chen Z H, Liu X, Zhang F 2020 J. Nano Res. 13 1795Google Scholar

    [5]

    Han Q Y, Zhao B C, Gao W, Li Y X, Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys. 24 13730Google Scholar

    [6]

    Xiang Y, Zheng S S, Yuan S S, Wang J, Wu Y H, Zhu X H 2022 Mikrochim. Acta 189 120Google Scholar

    [7]

    Li Y, Chen C, Liu F F, Liu J L 2022 Mikrochim. Acta 189 109Google Scholar

    [8]

    Xu M M, Ge W Y, Zhang X M, Li Y X 2022 Opt. Laser Technol. 145 107529Google Scholar

    [9]

    Alkahtani M, Almuqhim A A, Qasem H, Alsofyani N, Alfahd A, Alenzi S M, Aljuwayr A, Alzahrani Y A, Al-Badri A, Alotaibi M H, Bagabas A, AlHazaa A N, Hemmer P R 2021 Nanomaterials 11 2909Google Scholar

    [10]

    Liu B T, Huang T H, Wang T L, Hsu C C 2021 Sol Energy 227 1Google Scholar

    [11]

    Dong H, Sun L D, Yan C H 2021 J. Am. Chem. Soc. 143 20546Google Scholar

    [12]

    Wang J, Sun X Y, Han Y D, Cheng Z Z, Liu T G 2021 Opt. Commun. 483 126663Google Scholar

    [13]

    董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟 2021 物理学报 70 154208Google Scholar

    Dong J, Zhang C X, Cheng X T, Xing Y, Han Q Y, Yan X W, Qi J X, Liu J H, Yang Y, Gao W 2021 Acta Phys. Sin. 70 154208Google Scholar

    [14]

    Wang Y, Low J X, Bi Y F, Bai Y, Jiang Y W, Wang H H, Liu W Y, Ma Y Q, Chen Y N, Long R, Xiong Y J 2022 Chin. Chem. Lett. 33 1087Google Scholar

    [15]

    Jia H, Li D G, Zhang D, Dong Y H, Ma S T, Zhou M, Di W H, Qin W P 2021 ACS Appl. Mater. Inter. 13 4402Google Scholar

    [16]

    Chen T, Hao S W, Azimbay A, Shang Y F, Pi Q L, Hou Y D, Yang C H 2019 J. Power Sources 430 43Google Scholar

    [17]

    Jiao X F, Ye W H, Huang Q Y, Luo G, Yu L L, Liu X T 2020 J. Rare Earths 38 697Google Scholar

    [18]

    Ju D D, Gao X L, Zhang S C, Li Y, Cui W J, Yang Y H, Luo M Y, Liu S J 2021 CrystEngComm 23 3892Google Scholar

    [19]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compd. 857 157578Google Scholar

    [20]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [21]

    Felsted R G, Pant A, Bard A B, Xia X J, Luntz-Martin D R, Dadras S, Zhang S, Vamivakas A N, Pauzauskie P J 2022 Cryst. Growth Des. 22 3605Google Scholar

    [22]

    Zhang Y H, Huang L, Liu X G 2016 Angew. Chem. Int. Ed. 55 5718Google Scholar

    [23]

    He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater Res Bull. 121 110613

    [24]

    Yang D D, Peng Z X, Zhan Q Q, Huang X J, Peng X Y, Guo X, Dong G P, Qiu J R 2019 Small 15 1904298Google Scholar

    [25]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan W, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl. Phys. Lett. 118 173301Google Scholar

    [26]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001Google Scholar

    [27]

    Wu Y F S, Lai F Q, Liu B, Li Z B, Liang T X, Qiang Y C, Huang J H, Ye X Y, You W X 2020 J. Rare Earths 38 130Google Scholar

    [28]

    Yan L, Zhou B, Song N, Liu X L, Huang J S, Wang T, Tao L L, Zhang Q Y 2018 Nanoscale 10 17949Google Scholar

    [29]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdia A, Zhao S L 2022 J. Alloys Compd. 891 162067Google Scholar

    [30]

    赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖 2019 物理学报 68 213301Google Scholar

    Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z, Xu S, Cheng L H, Chen B J 2019 Acta Phys. Sin. 68 213301Google Scholar

    [31]

    张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 084203Google Scholar

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 084203Google Scholar

    [32]

    高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 034207Google Scholar

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207Google Scholar

    [33]

    Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P, Lin J 2019 Chem. Mater. 31 7898Google Scholar

    [34]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloys Compd. 818 152934Google Scholar

    [35]

    Gao D L, Wang D, Zhang X Y, Feng X J, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun. Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal. Acta Physica Sinica, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [3] Gao Wei, Shao Lin, Han Shan-Shan, Xing Yu, Zhang Jing-Jing, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Upconversion white-light emission luminescence characteristics based on single-particle NaYF4 microrod. Acta Physica Sinica, 2023, 72(2): 024207. doi: 10.7498/aps.72.20221606
    [4] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [5] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [6] Su Xiao-Na, Wan Ying, Zhou Zhi-Xuan, TushaguAbuduwufu, Hu Lian-Lian, AierkenSidike. Luminescence properties and energy transfer of Na2CaSiO4:Sm3+, Eu3+ phosphor. Acta Physica Sinica, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [7] Xiong Xiao-Bo, Liu Wan-Li, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi, Liang Yu-Jun. Photoluminescence properties and energy transfer of SrZn2(PO4)2:Sn2+, Mn2+ phosphor. Acta Physica Sinica, 2015, 64(24): 247801. doi: 10.7498/aps.64.247801
    [8] Xiong Xiao-Bo, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi. Photoluminescence properties and energy transfer from Ce3+ to Mn2+ in Na2SrMg(PO4)2. Acta Physica Sinica, 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [9] Mi Rui-Yu, Xia Zhi-Guo, Liu Hai-Kun. Luminescent properties and energy transfer in Ca4Y6 (SiO4)6F2: Ce3+, Mn2+ phosphor. Acta Physica Sinica, 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [10] Bi Chang-Hong, Meng Qing-Yu. Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors. Acta Physica Sinica, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [11] Shen Ying-Long, Tang Chun-Mei, Sheng Qiu-Chun, Liu Shuang, Li Wen-Tao, Wang Long-Fei, Chen Dan-Ping. Spectroscopic properties and energy transfer of Ce3+/Eu2+ codoped oxide glasses with high Gd2O3 concentration. Acta Physica Sinica, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [12] Zhong Rui-Xia, Zhang Jia-Hua, Li Ming-Ya, Wang Xiao-Qiang. Luminescent properties and energy transfer in MAl12O19: Eu2+, Cr3+ (M = Ca, Sr, Ba). Acta Physica Sinica, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [13] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen. Upconversion of Er3+/Yb3+ doped lead fluosilicate microcrystalline glass. Acta Physica Sinica, 2009, 58(10): 6858-6862. doi: 10.7498/aps.58.6858
    [14] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen, Yan Xiao-Hong. Size dependent luminescence properties of Er3+ doped nano-crystalline Y2O3. Acta Physica Sinica, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [15] Yang Zhi-Ping, Yang Guang-Wei, Wang Shao-Li, Tian Jing, Li Pan-Lai, Li Xu. Luminescence and energy transfer of Eu2+, Mn2+ in BaZnP2O7. Acta Physica Sinica, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [16] Chen Gan-Xin, Zhang Qin-Yuan, Yang Gang-Feng, Yang Zhong-Min, Jiang Zhong-Hong. 2.0 μm emission properties and energy transfer of Tm3+/Ho3+-codoped tellurite glass. Acta Physica Sinica, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [17] Shi Dong-Mei, Zhang Qin-Yuan, Yang Gang-Feng, Jiang Zhong-Hong. Spectroscopic properties and energy transfer of Tm3+/Ho3+-codoped Ga2O3-Bi2O3-GeO2-PbO-PbF2 glasses for 1.47μm luminecence. Acta Physica Sinica, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [18] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [19] Sun Shi-Ju, Teng Feng, Xu Zheng, Zhang Yan-Fen, Hou Yan-Bing. Luminescence properties and energy transfer in the mixed thin film of Alq3 and PVK. Acta Physica Sinica, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [20] WANG DIAN-YUAN, XIE PING-BO, ZHANG WEI-PING, LOU LI-REN, XIA SHANG-DA. A STUDY ON ENERGY TRANSFER AND ENERGY MIGRATION MODELS FOR RE IONS LUMINESCENCE SYSTEM. Acta Physica Sinica, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
Metrics
  • Abstract views:  5105
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2022
  • Accepted Date:  26 August 2022
  • Available Online:  26 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回