-
A series of Na2CaSiO4:Sm3+, Eu3+ phosphors is prepared by the high-temperature solid-state reaction method at 1150℃, and their crystal structures, luminescent properties and energy transfer phenomenon influenced by Sm3+ and Eu3+ are studied. The X-ray diffraction results indicate that the samples single-and co-doped with Sm3+ and Eu3+ keep single-phase and no impurity phases are observed. At the excitation wavelength of 404 nm, the Na2CaSiO4:Sm3+ samples emit narrow-band spectral fluorescence with lines composed of peak-to-peak values of 565, 602, 650, 713 nm, which correspond to the electronic transitions of Sm3+ from the ground state level 4G5/2 to 6H5/2, 6H7/2, 6H9/2, and 6H11/2. On the other hand, the Na2CaSiO4:Eu3+ sample exhibits red emission with a peak-to-peak value of 613 nm at the excitation wavelength of 395 nm. The analyses of the spectrum and lifetime of fluorescence show that with the increase of Eu3+ content, the emission intensity of Sm3+ decreases and the emission intensity of Eu3+ increases. Moreover, the lifetime corresponding to Sm3+ at 602 nm decreases gradually. It is indicated that the energy transfers from Sm3+ to Eu3+. The critical distance of energy transfer is 1.36 nm, which is calculated by the concentration quenching method. The energy transfer mechanism is ascribed to the quadrupole-quadrupole interaction. As the Eu3+ doping concentration increases, the transfer efficiency increases to 20.6%. In conclusion, the Na2CaSiO4:Sm3+, Eu3+ phosphors may be used as a red component for white light-emitting diodes.
-
Keywords:
- Na2CaSiO4:Sm3+ /
- Eu3+ /
- red luminescent material /
- energy transfer
[1] Barsoum M W 2000 Prog. Solid State Ch. 28 201
[2] Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392
[3] Nag A, Kutty T P N 2005 Mater. Chem. Phys. 91 524
[4] Jiao H Y, Wang Y H 2010 Apply Phys. B 98 423
[5] Natarajan V, Murthy K V R 2005 Solid State Commun. 134 261
[6] Shi Y R, Yang Z, Wang W, Zhu G, Wang Y 2011 Mater. Res. Bull. 46 1148
[7] Zhuo F P, Zhang W, Huo J M, Zhao Y L, Wu Y, Ding X 2012 China. J. Lumin. 33 238 (in Chinese)[卓芳平, 张伟, 火军明, 赵玉亮, 吴垠, 丁鑫 2012 发光学报 33 238]
[8] Xie M B, Li Y, Li R 2013 J. Lumin. 136 303
[9] Liu Q B, Liu Y, Ding Y, Peng Z, Yu Q, Tian X 2014 J. Sol. Gel. Sci. Techn. 71 276
[10] Wang Z, Lou S, Li P 2014 J. Alloy Compd. 586 536
[11] Min X, Huang Z, Fang M, Liu Y G, Tang C, Wu X 2014 Inorg. Chem. 53 60605
[12] Zhen Xing F U, Liu B R, Yang B X 2016 Spectrosc Spectr. Anal. 36 2686
[13] Park W J, Jung M K, Masaki T, Im S J, Yoon D H 2008 Mater. Sci. Eng. 146 95
[14] Li P, Xu Z, Zhao S, Zhang F, Wang Y 2012 Mater. Res. Bull. 47 3825
[15] Hachani S, Moine B, El-Akrmi A, Férid M 2010 J. Lumin. 130 1774
[16] Naresh V, Rudramadevi B H, Buddhudu S 2015 J. Alloy Compd. 632 59
[17] Gong W L, Zhong R X, Qi J Q, Liu Z R, Zhang X Y (in Chinese)[龚文丽, 钟瑞霞, 齐建全, 刘自然, 张晓燕 2015 人工晶体学报 44 3280]
[18] Lin H, Yang D L, Liu G S, Ma T A, Zhai B, An Q D 2005 J. Lumin. 113 121
[19] Daldosso M, Falcomer D, Speghini A, Ghigna P, Bettinelli M 2008 Opt. Mater. 30 1162
[20] Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids. 64 841
[21] Xie M B, Pan R K 2013 J. Alloy Compd. 551 48
[22] Huang D, Zhou Y, Xu W, Yang Z, Liu Z, Hong M, Lin Y, Yu J 2013 J. Alloy Compd. 554 312
[23] Dexter D, Schulman J H 1954 J. Chem. Phys. 22 1063
[24] van Uitert L G 1971 J. Lumin. 4 1
[25] Blass G 1969 Philips Res. Rep. 24 131
[26] Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese)[杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]
[27] Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese)[熊晓波, 袁曦明, 刘金存, 宋江齐 2015 物理学报 64 017801]
-
[1] Barsoum M W 2000 Prog. Solid State Ch. 28 201
[2] Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392
[3] Nag A, Kutty T P N 2005 Mater. Chem. Phys. 91 524
[4] Jiao H Y, Wang Y H 2010 Apply Phys. B 98 423
[5] Natarajan V, Murthy K V R 2005 Solid State Commun. 134 261
[6] Shi Y R, Yang Z, Wang W, Zhu G, Wang Y 2011 Mater. Res. Bull. 46 1148
[7] Zhuo F P, Zhang W, Huo J M, Zhao Y L, Wu Y, Ding X 2012 China. J. Lumin. 33 238 (in Chinese)[卓芳平, 张伟, 火军明, 赵玉亮, 吴垠, 丁鑫 2012 发光学报 33 238]
[8] Xie M B, Li Y, Li R 2013 J. Lumin. 136 303
[9] Liu Q B, Liu Y, Ding Y, Peng Z, Yu Q, Tian X 2014 J. Sol. Gel. Sci. Techn. 71 276
[10] Wang Z, Lou S, Li P 2014 J. Alloy Compd. 586 536
[11] Min X, Huang Z, Fang M, Liu Y G, Tang C, Wu X 2014 Inorg. Chem. 53 60605
[12] Zhen Xing F U, Liu B R, Yang B X 2016 Spectrosc Spectr. Anal. 36 2686
[13] Park W J, Jung M K, Masaki T, Im S J, Yoon D H 2008 Mater. Sci. Eng. 146 95
[14] Li P, Xu Z, Zhao S, Zhang F, Wang Y 2012 Mater. Res. Bull. 47 3825
[15] Hachani S, Moine B, El-Akrmi A, Férid M 2010 J. Lumin. 130 1774
[16] Naresh V, Rudramadevi B H, Buddhudu S 2015 J. Alloy Compd. 632 59
[17] Gong W L, Zhong R X, Qi J Q, Liu Z R, Zhang X Y (in Chinese)[龚文丽, 钟瑞霞, 齐建全, 刘自然, 张晓燕 2015 人工晶体学报 44 3280]
[18] Lin H, Yang D L, Liu G S, Ma T A, Zhai B, An Q D 2005 J. Lumin. 113 121
[19] Daldosso M, Falcomer D, Speghini A, Ghigna P, Bettinelli M 2008 Opt. Mater. 30 1162
[20] Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids. 64 841
[21] Xie M B, Pan R K 2013 J. Alloy Compd. 551 48
[22] Huang D, Zhou Y, Xu W, Yang Z, Liu Z, Hong M, Lin Y, Yu J 2013 J. Alloy Compd. 554 312
[23] Dexter D, Schulman J H 1954 J. Chem. Phys. 22 1063
[24] van Uitert L G 1971 J. Lumin. 4 1
[25] Blass G 1969 Philips Res. Rep. 24 131
[26] Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese)[杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]
[27] Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese)[熊晓波, 袁曦明, 刘金存, 宋江齐 2015 物理学报 64 017801]
Catalog
Metrics
- Abstract views: 7333
- PDF Downloads: 245
- Cited By: 0