-
The development of highly efficient, stable, and color-tunable lead-free perovskite phosphors is a central challenge for their application in next-generation optoelectronic devices. In this work, a series of Cs2NaGd0.985Cl6:0.015Sb3+ phosphors with varying Er3+ concentrations were successfully synthesized via a microwave-assisted solid-state method. XRD results confirmed that the introduction of Er3+ did not induce any crystal structure change or impurity phase formation. Under 336 nm excitation, the material exhibited a broad blue emission centered at 460 nm from self-trapped excitons (STEs) of the host, alongside characteristic green/red emissions of Er3+ ions (524 nm, 550 nm, 667 nm). By investigating the concentration-dependent luminescence behavior, the optimal Er3+ doping concentration was determined to be 0.03, yielding the maximum emission intensity with an absolute photoluminescence quantum yield (PLQY) of 37.09%; the concentration quenching mechanism was attributed to electric dipole-dipole interaction. At this optimal concentration, More importantly, at the optimal concentration, steady-state and transient fluorescence spectroscopy analysis confirmed the existence of an efficient energy transfer channel from the host STEs to Er3+ ions, with a calculated energy transfer efficiency of 24.58%. This process significantly enhances the characteristic emission of Er3+ and is key to achieving efficient multicolor luminescence. Furthermore, the optimized sample Cs2NaGd0.955Cl6:0.015Sb3+,0.03Er3+ demonstrated excellent thermal stability, retaining 69.4% of its room-temperature (298 K) emission intensity at 423 K. More importantly, tunable luminescence from blue (CIE: 0.160, 0.194) to green (CIE: 0.215, 0.374) was successfully achieved by simply adjusting the Er3+ concentration. this work not only provides an in-depth elucidation of the energy transfer pathways and concentration quenching mechanisms in Sb3+/Er3+ co-doped double perovskite systems from a physical mechanism perspective, but also experimentally demonstrates that the developed lead-free phosphors—combining high quantum efficiency, excellent thermal stability, and broad color tunability into a single material—exhibit promising potential for application as core luminescent materials in high-performance, environmentally friendly green light-emitting diodes (LEDs).
-
Keywords:
- Double perovskite /
- Sb3+/Er3+ co-doping /
- Energy transfer /
- Color tunable
-
[1] Li G, Wisnivesky Rocca Rivarola F, Davis N J, Bai S., Jellicoe T C, de la Pena F, Tan Z K 2016 Adv. Mater. 28 3528
[2] Jiang Q, Zhu K 2024 Nat. Rev. Mater. 9 399
[3] Tao H, Fang Y, Zhang Y, Zhang Y, Hu J 2024 Ceram. Int. 50 28877
[4] Guan X, Li Y, Meng Y, Wang K, Lin K, Luo Y, Wei Z 2024 Nat. Commun. 1 9913
[5] Grandhi G K, Viswanath N S M, Cho H B, Han J H, Kim S M, Choi S, Im W B 2020 J. Phys. Chem. Lett. 11 7723
[6] Morgan E E, Mao L, Teicher S M, Wu G, 2020 Inorg. Chem. 59 3387
[7] Zhao C, Gao Y, Qiu J 2023 ACS Appl. Mater. Interfaces. 15 59610
[8] Mahor Y, Mir W J, Nag A 2019 J. Phys. Chem. C. 123 15787
[9] Dahl J C, Osowiecki W T, Cai Y, Swabeck J K, Bekenstein Y, Asta M, Alivisatos A P 2019 Chem. Mater. 31 3134
[10] Lee W, Choi D, Kim S 2020 Chem. Mater. 32 6864
[11] Tan C, Zhang S, Wang, Yao J, Liu H, Zou B, Zeng R 2024 Inorg. Chem. Front. 11 3607
[12] Jing Y, Liu Y, Li M, Xia Z 2021 Adv. Opt. Mater. 9 2002213.
[13] Zhou J, Rong X, Molokeev M S, Wang Y, Yun X, Xu D, Li X 2021 Mater. Chem. Front. 5 4997
[14] Zhou J, Yun X, Wang R, Xu D, Li X 2021 Mater. Chem. Front. 5 6133
[15] Yu Q, Lv S, Liu J, Zhang P, Hao S, Zhu C, Yang C 2024 J. Alloys Compd. 983 173854
[16] Zeng R, Zhang L, Xue Y, Ke B, Zhao Z, Huang D, Zou B 2020 J. Phys. Chem. Lett. 11 2053
[17] Liu X, Xu X, Li B, Yang L, Li Q, Jiang H, Xu D 2020 Small 16 2002547
[18] Saikia S, Gopal A, Rathod R, Joshi A, Priolkar K R, Saha S, Santra P K, Shanmuganathan K, Nag A 2025 Angew. Chem. Int. Ed. 64 e202415003
[19] Sun R, Lu P, Zhou D L,Xu W, Ding N, Shao H, Zhang Y, Li D Y, Wang N, Zhuang X M, Dong B, Bai X, Song H W 2020 ACS Energy Lett. 5 2131
[20] Xu H Q, Liu J, Hu Q C, Yu J Y, Han Q J, Wu W Z 2024 Adv. Opt. Mater. 12 2302288
[21] Yang D Y, Cui R R, Deng C Y 2024 J. Rare Earths 43 1821
[22] Wang Y Z, Liu Y T, Li Q M, Meng L L, Yao H, Chen Q, Sheng S Q, Xiao J 2025 Mater. Lett. 385 138208
[23] Li Z H, Jiang X K, Wang J X, Zhao Y, Zhou H W 2024 J.Lumin. 45 1667 (in Chinese)[李忠辉, 蒋小康, 王佳旭, 赵炎, 周恒为 2024 发光学报 45 1667 ]
[24] Jin Q R, Shi J R, Jin J W, Xu W L, Chen S Q, Pan Y X 2024 J. Mater. Chem. C 12 5615
[25] Wang H Y, Yao J D, Wei Q L, Zhao J L, Zou B S, Zeng R S 2023 Adv. Opt. Mater. 11 2300694
[26] Gai S J, Gao P X, Chen K, Tang C Z, Zhao Y Y, Wei J Q, Zhang Y, Molokeev M M, Zhou Z 2024 Adv. Opt. Mater. 12 2302870
[27] Han J H, Samanta T, Cho H B, Jang S W, Viswanath N S M, Kim Y R, Seo J M, Im W B 2023 Adv. Mater. 35 2302442
[28] Liu Z, Huang Y P, Chen T H, Feng W L 2024 J. Solid State Chem. 329 124431
[29] Deng B, Jiang J H, Chen W S, Zhang A L, Liang Z K, Li F, Zeng F H, Zhang G G 2022 Inorg. Chem. Commun. 145 110051
[30] Yang S W, Wu M, He C, Wu Y P, Zhang Y J, Yu J J 2024 J. Alloys Compd. 989 174295
[31] Cao J L, Ren Q, Hai O 2024 Ceram. Int. 50 15668
[32] Guo X X, Wei J H, Luo J B, He Z L, Zhang Z Z, Chen J H, Kuang D B 2024 Adv. Opt. Mater. 12 2301914
[33] Ru J J, Zhao B, Zeng F, Guo F Y 2024 Bull. Mater. Sci. 47 74
[34] Chen Y L, Wu H Y, Li Y M, Liu Z P, Wan J Y, Hu Y H 2023 J. Mater. Sci.: Mater. Electron. 34 1740
Metrics
- Abstract views: 25
- PDF Downloads: 2
- Cited By: 0









下载: