Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation into the Highly Sensitive Optical Pressure Sensing Performance of Mn2+-Doped CaZnGe2O6 Double Perovskite Compound

ZHEN Zhen CAI Anzhe SUN Boyu ZHANG Huan CHEN Shuanglong WANG qiushi LV Hang WANG Yue WANG Chunjie DONG Enlai LI Xin

Citation:

Investigation into the Highly Sensitive Optical Pressure Sensing Performance of Mn2+-Doped CaZnGe2O6 Double Perovskite Compound

ZHEN Zhen, CAI Anzhe, SUN Boyu, ZHANG Huan, CHEN Shuanglong, WANG qiushi, LV Hang, WANG Yue, WANG Chunjie, DONG Enlai, LI Xin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Optical pressure measurement technology, which is based on non-contact monitoring of pressure by observing the luminescent characteristics of luminescent materials under pressure influence, has always been widely popular. Therefore, the development of luminescent materials with high pressure-sensitivity, high accuracy, and a wide pressure application range has become a key focus. In this paper, the optical pressure sensing performance of a Mn2+-based pyroxene-type luminescent material (CaZnGe2O6:0.02Mn2+) is reported. Within the pressure range of 0.33~9.49 GPa, it demonstrates high sensitivity and excellent cyclic repeatability based on the pressure measurement strategies of both the spectral shift and luminescent intensity ratio. As the pressure increases, the maximum absolute sensitivity (Sa) values (dλ/dP) of the green and red emission positions of Mn2+ at different sites in the matrix reach 10.47 nm/GPa and 4.83 nm/GPa, respectively, which are 28.7 and 13.2 times those of the ruby pressure gauge (Al2O3:Cr3+). Compared to the traditional method that uses a single luminescent peak, this pressure measurement method employing the position shift os dual-luminescent emission can enhance the accuracy and reliability of pressure measurement more effectively. In addition, it is the first time to calculate the pressure sensitivity of Mn2+-based luminescent materials using the ratio of spectral integral intensities in selected areas, and the obtained maximum relative pressure sensitivity (Sr) value is 64.28 %/GPa, with Sr remaining above 16.06 %/GPa throughout a rather wide pressure range. Undoubtedly, CaZnGe2O6:0.02Mn2+ exhibits extremely outstanding optical pressure measurement performance, demonstrating its great application potential in the field of optical pressure sensing.
  • [1]

    Guo L L, Zhao Z T, Sui M H, Wang P, Liu B B 2024 Acta Phys. Sin. 73 086102 (in Chinese) [郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰 2024 物理学报 73 086102]

    [2]

    Ye R N, Wang J T, Yang J Y, Wang X C, Lei J C, Zhao W Y, Meng Y F, Xiao G J, Zou B 2025 Chin. Phys. B 34 066204 (in Chinese) [叶润楠, 王敬天, 杨佳毅, 王旭晨, 雷钧策, 赵文雅, 孟雨凡, 肖冠军, 邹勃 2025 中国物理B 34 066204]

    [3]

    Zhang X T, Li C Y, Tian H, Wang X Y, Li Z L, Li Q J 2025 Chin. Phys. B 34 066105 (in Chinese) [张雪婷, 李晨一, 田辉, 王心悦, 李宗伦, 李全军 2025 中国物理B 34 066105]

    [4]

    Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930

    [5]

    Zhao D L, Li S X, Su Y, Qin J J, Xiao G J, Shang Y C, Yin X, Lv P F, Wang F, Yang J Y, Liu Z D, Lan F J, Zeng Q S, Zhang L J, Gao F, Zou B 2025 Nat. Commun. 16 6203

    [6]

    Chen H, Seto T, Wang Y H 2022 Inorg. Chem. Front. 9 1644

    [7]

    Zheng T, Runowski M, Xue J P, Luo L H, Rodríguez-Mendoza U R, Lavin V, Martin I R, Rodriguez-Hernandez P, Munoz A, Du P 2023 Adv. Funct. Mater. 33 2214663

    [8]

    Syassen K 2008 High Press. Res. 28 75

    [9]

    Du P, Xue J P, Gonzlez A M, Luo L H, Wozny P, Rodriguez-Mendoza U R, Lavin V, Runowski M 2025 Chem. Eng. J. 505 159652

    [10]

    Du P, Xue J P, Ma S L, Wozny P, Lavin V, Luo L H, Runowski M 2025 Mater. Horiz. 12 4822

    [11]

    Su K, Mei L F, Liu Z Q, Pan X, Shuai P F, Xie J Y, Ma B, Guo Q F, Lin C J, Chen M C, Peng Z J, Liao L B, Hu W B, Lv G C 2025 Adv. Funct. Mater. 35 2507563

    [12]

    Zheng T, Luo J C, Peng D F, Peng L, Wozny P, Barzowska J, Kaminski M, Mahlik S, Moszczynski J, Soler-Carracedo K, Rivera-Lopez F, Hemmerich H, Runowski M 2024 Adv. Sci. 11 2408686

    [13]

    Wei S, Lyu Z Y, Lu Z, Luo P C, Zhou L H, Sun D S, Tan T X, Shen S D, You H P 2023 Chem. Mater. 35 7125

    [14]

    Zhu M J, Luo J C, Liang T L, Zheng Y T, Li X, Huang Z F, Ren B Y, Zhang X H, Li J W, Zheng Z T, Wu J H, Zhong Y L, Wang Y, Wang C F, Peng D F 2023 Laser Photonics Rev. 17 2300517

    [15]

    Li G X, Li G, Mao Q N, Pei L, Yu H, Liu M J, Chu L, Zhong J S 2022 Chem. Eng. J. 430 132923

    [16]

    Wei G H, Li P L, Li R, Wang Y, He S X, Li J H, Shi Y W, Suo H, Yang Y B, Wang Z J 2023 Adv. Opt. Mater. 11 2301794

    [17]

    Yang F, Yang M T, Liu X T, Yang J P, Wu Z N, Liang X J, Lv C Y, Xiang W D 2023 Adv. Funct. Mater. 33 2303340

    [18]

    Brik M G, Ma C G, Piasecki M, Srivastava A M 2020 Chinese J. Lumin. 41 1011

    [19]

    Wang J, Ma Q Q, Hu X X, Liu H Y, Zheng W, Chen X Y, Yuan Q, Tan W H 2017 ACS Nano 11 8010

    [20]

    Xu Y, Wu S M, Li X L, Wang Z P, Han Y D, Wu J B, Zhang X 2018 Mater. Lett. 210 235

    [21]

    Marciniak L, Kniec K, Elzbieciak-Piecka K, Trejgis K, Stefanska J, Dramicanin M 2022 Coordin. Chem. Rev. 469 214671

    [22]

    Wang M Y, Wu H, Dong W B, Lian J Y, Wang W X, Zhou J Y, Zhang J C 2022 Inorg. Chem. 61 2911

    [23]

    Wang Z D, Xiao Y, Liu B J, Chen K, Shao P S, Chen Z C, Xiong P X, Gan J L, Chen D D 2023 Adv. Opt. Mater. 12 2301796

    [24]

    Xue J P, Runowski M, Soler-Carracedo K,Wozny P, Munoz A, Luo L H, Chen K, Huang Y P, Lavin V, Du P 2025 Adv. Opt. Mater. 13 2402399

    [25]

    Li X, Ding Y, Shao L, Wang Q S, Lv H, Yu Y J, Chen S L 2025 Ceram. Int. 51 39193

    [26]

    Liu C B, Che G B, Xu Z L, Wang Q W 2009 J. Alloy. Compd. 474 250

    [27]

    Lin M C, Gao Z R, Xu C F, Yuan Y, Tang Y, Liu T, Sun L Z 2023 ACS Appl. Opt. Mater. 1 724

    [28]

    Zhou S, Miao X, Bai X, Zhang P, Wang Y F, Yang Y Z, Li S X, Qin W F, Liu W S 2025 Laser Photonics Rev. e01511

    [29]

    Wang W X, Sun Z Y, He X Y, Wei Y D, Zou Z H, Zhang J C, Wang Z F, Zhang Z Y, Wang Y H 2017 J Mater. Chem. C 5 4310

    [30]

    Zheng T, Luo L H, Du P, Lis S, Rodriguez-Mendoza U R, Lavin V, Martin I R, Runowski M 2022 Chem. Eng. J. 443 136414

    [31]

    Rutstein M S, White W B 1971 Am. Mineral. 56, 877

    [32]

    Lambruschi E, Aliatis I, Mantovani L, Tribaudino M, Bersani D, Redhammer G J, Lottici P P 2015 J. Raman Spectrosc. 46 586

    [33]

    Tribaudino M, Aliatis I, Bersani D, Gatta G D, Lambruschi E, Mantovani L, Redhammer G, Lottici P P 2017 J. Raman Spectrosc. 48 1443

    [34]

    Redhammer G J, Tippelt G, Reyer A, Gratzl R, Hiederer A 2017 Acta Cryst. B73 419

    [35]

    Wang Y C, Seto T, Ishigaki K, Uwatoko Y, Xiao G J, Zou B, Li G S, Tang Z B, Li Z B, Wang Y H 2020 Adv. Funct. Mater. 30 2001384

    [36]

    Zheng Z B, Song Y H, Zheng B F, Zhao Y X, Wang Q L, Zhang X T, Zou B, Zou H F 2023 Inorg. Chem. Front. 10 2788

    [37]

    Ming Z Q, Zhao J, Swart H C, Xia Z G 2020 J. Rare Earth. 38 506

    [38]

    Long Z W, Wen Y G, Qiu J B, Wang J, Zhou D C, Zhu C C, Lai J A, Xu X H, Yu X, Wang Q 2019 Chem. Eng. J. 375 122016

    [39]

    Chen S L, Li X, Dong E L, Lv H, Yang X B, Liu R, Liu B B 2019 J. Phys. Chem. C 123 29693

    [40]

    Dai Y X, Ma M H, Qi Y 2021 J. Phys. Chem. C 125 9342

    [41]

    Moura J V B, Ferreira W C, da Silva-Filho J G, Alabarse F G, Freire P T C, Luz-Lima C 2023 Spectrochim. Acta A 299 122871

    [42]

    Chopelas A, Serghiou G 2002 Phys. Chem. Miner. 29 403

    [43]

    Thompson R M, Downs R T 2008 Am. Miner. 93 177

    [44]

    Hofer G, Kuzel J, Scheidl K S, Redhammer G, Miletich R 2015 J. Solid State Chem. 229 188

    [45]

    Luo C L, Wang L R, Mo Q Q, Huang Y J, Gao H, Liu Q H, Song K X, Chu S W, Han Y B, Shi Z F 2025 Laser Photonics Rev. e01271

    [46]

    Zheng B F, Zhang X T, Zhang D, Wang F K, Zheng Z B, Yang X Y, Yang Q, Song Y H, Zou B, Zou H F 2022 Chem. Eng. J. 427 131897

    [47]

    Marciniak L, Wozny P, Szymczak M, Runowski M 2024 Coordin. Chem. Rev. 507 215770

    [48]

    Szymczak M, Runowski M, Lavin V, Marciniak L 2023 Laser Photonics Rev. 17 2200801

    [49]

    Zheng T, Sojka M, Wozny P, Martin I R, Lavin V, Zych E, Lis S, Du P, Luo L H, Runowski M 2022 Adv. Opt. Mater. 10 2201055

    [50]

    Szymczak M, Jaskielewicz J, Runowski M, Xue J P, Mahlik S, Marciniak L 2024 Adv. Funct. Mater. 34 2314068

    [51]

    Szymczak M, Wozny P, Runowski M, Pieprz M, Lavin V, Marciniak L 2023 Chem. Eng. J. 453 139632

  • [1] BAN jifeng, LI zhonghui, ZHANG xinglong, ZHAO Xingshen, LIU Changli, ZHOU Hengwei, JIANG Xiaokang. Color-Tunable Luminescence via Energy Transfer in Sb3+/Er3+ Co-doped Cs2NaGdCl6 Double Perovskite. Acta Physica Sinica, doi: 10.7498/aps.75.20251424
    [2] KE Wu, QINGXIN He, HAISHUN Liu. Proton conduction enhanced CMC-Na/MOF-801/PPY for highly sensitive and fast response humidity sensing. Acta Physica Sinica, doi: 10.7498/aps.75.20251427
    [3] Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiang-Qian. Optical enhancement of perovskite solar cells by metallic nano-patterns. Acta Physica Sinica, doi: 10.7498/aps.73.20240607
    [4] Lai Wei-En, Wu Zong-Dong, Li Li-Qi, Liu Gen, Fang Yan-Jun. Highly sensitive broadband terahertz modulator based on MAPbI3/Graphene/Si composite structure. Acta Physica Sinica, doi: 10.7498/aps.72.20230527
    [5] Wang Xing-Ping, Zhao Gang, Jiao Kang, Chen Bing, Kan Rui-Feng, Liu Jian-Guo, Ma Wei-Guang. Uncertainty of optical feedback linear cavity ringdown spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.70.20220186
    [6] Wang Xing-Ping,  Zhao Gang,  Jiao Kang,  Chen Bing,  Kan Rui-Feng,  Liu Jian-Guo,  Ma Wei-Guang. Research on uncertainty of optical feedback linear cavity ringdown spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.71.20220186
    [7] Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong. Research progress of critical behaviors and magnetocaloric effects of perovskite manganites. Acta Physica Sinica, doi: 10.7498/aps.70.20210097
    [8] Xia Wen-Fei, Chen Jian-Feng, Long Li, Li Zhi-Yuan. Correlation of optical sensing with extinction coefficient and local field enhancement in gold nanosphere dimer. Acta Physica Sinica, doi: 10.7498/aps.70.20210231
    [9] Yu Peng, Cao Sheng, Zeng Ruo-Sheng, Zou Bing-Suo, Zhao Jia-Long. Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping. Acta Physica Sinica, doi: 10.7498/aps.69.20200795
    [10] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, doi: 10.7498/aps.69.20200988
    [11] Wu Li-Qian, Qi Wei-Hua, Li Yu-Chen, Li Shi-Qiang, Li Zhuang-Zhi, Xue Li-Chao, Ge Xing-Shuo, Ding Li-Li. Influence of thermal treatment on the ionic valence and the magnetic structure of perovskite manganites La0.95Sr0.05MnO3. Acta Physica Sinica, doi: 10.7498/aps.65.027501
    [12] Yang Hong, Qi Wei-Hua, Ji Deng-Hui, Shang Zhi-Feng, Zhang Xiao-Yun, Xu Jing, Lang Li-Li, Tang Gui-De. Structure and magnetic properties of perovskite manganites La2/3Sr1/3FexMn1-xO 3. Acta Physica Sinica, doi: 10.7498/aps.63.087503
    [13] Yi Ding, Qin Wei, Xie Shi-Jie. Investigation of polarons in perovskite manganites. Acta Physica Sinica, doi: 10.7498/aps.61.207101
    [14] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, doi: 10.7498/aps.59.4014
    [15] Xiao Song-Qing, Xie Guo-Feng. Sensitivity analysis and optimization of interatomic potential parameters for perovskites. Acta Physica Sinica, doi: 10.7498/aps.59.4808
    [16] Zhang Yu, Liu Yong-Jun, Liu Xian-Feng, Jiang Xue-Fan. Electronic structure and magnetism of the double perovskite SrKFeWO6. Acta Physica Sinica, doi: 10.7498/aps.59.3432
    [17] Tan Guo-Tai, Chen Zheng-Hao, Zhang Xiao-Zhong. Two magnetoresistance phenomena in perovskite manganite of La1-xTexMnO3(x=0.04, 0.1). Acta Physica Sinica, doi: 10.7498/aps.54.379
    [18] Xiang Jun, Li Li-Ping, Su Wen-Hui. Preparation and characterization of a new perovskite-type oxide ion conductor KN b1-xMgxO3-δ. Acta Physica Sinica, doi: 10.7498/aps.52.1474
    [19] Yanag Guang-Liang, Xianyu Wen-Xu, Qian Zheng -Nan, Jin Han-Min. . Acta Physica Sinica, doi: 10.7498/aps.49.553
    [20] CHEN CHUANG-TIAN. AN IONIC GROUPING THEORY OF THE ELECTRO-OPTICAL AND NON-LINEAR OPTICAL EFFECTS OF CRYSTALS (IV)——THE CALCULATION OF LINEAR OPTICAL SUSCEPTIBILITIES IN CRYSTALS OF THE PEROVSKITE AND THE TUNGSTEN BRONZE STRUCTURE TYPES. Acta Physica Sinica, doi: 10.7498/aps.27.41
Metrics
  • Abstract views:  25
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  13 December 2025
  • /

    返回文章
    返回