Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy transfer between WO42- groups and Eu3+ in CaWO4:Eu3+ phosphor

Liang Feng Hu Yi-Hua Chen Li Wang Xiao-Juan

Citation:

Energy transfer between WO42- groups and Eu3+ in CaWO4:Eu3+ phosphor

Liang Feng, Hu Yi-Hua, Chen Li, Wang Xiao-Juan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The pure CaWO4 and 1%Eu3+ doped CaWO4 phosphors are successfully prepared by the conventional solid state reaction method. The photoluminescence (PL) spectra, decay cures, and time-resolved PL spectra are measured at depend on different temperatures. Fluorescence spectra at room temperature (300 K) and low temperature (10 K) show that these two samples each have a broad band at about 430 nm, originating from the WO42- groups under 240 nm excitation, while the CaWO4:Eu3+sample exhibits the characteristic emission of Eu3+ corresponding to 5D0→7F1, 2, 3,4 transitions due to the absorbed energy transfer from WO42- groups to Eu3+ ions. And the red light at 616 nm of CaWO4: Eu3+ can be excited efficiently by UV (395 nm) and blue (465 nm) light. The decay curves at 300 K illustrate that the lifetime of WO42- group in pure CaWO4 is about 8.85 s but is shortened to 6.27 μs after Eu3+ions have been doped, which is a further good evidence for demonstrating the existence of WO42-–Eu3+ energy transfer process. The energy transfer efficiency (ηET)) and rate (ωET) between WO42- and Eu3+in CaWO4: 1%Eu3+ are 29.2% and 4:65×104 s-1 respectively, when T = 300 K. The energy transfer process is studied in detail by the time-resolved PL spectra, and the lifetime for the appearance of Eu3+ emission in CaWO4 decreases monotonically as temperature increases from 10 K to 300 K. The temperature dependence of luminescence decay time is performed and the results indicated that the lifetime of Eu3+ increases in a temperature range of 10-50 K, when the temperature is more than 50 K, thermal quenching of Eu3+ begins and the lifetime is shortened. However, the lifetime of WO42- reduces constantly with the increase of temperature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21271049).
    [1]

    Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]

    [2]

    Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977

    [3]

    Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297

    [4]

    Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21

    [5]

    Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 物理学报 60 013201]

    [6]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [7]

    Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687

    [8]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837

    [9]

    Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]

    [10]

    Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273

    [11]

    Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596

    [12]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113

    [13]

    Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753

    [14]

    Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921

    [15]

    Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003

    [16]

    Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201

    [17]

    Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43

    [18]

    Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214

    [19]

    Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489

    [20]

    Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18

    [21]

    Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524

    [22]

    Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 078802]

    [23]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [24]

    Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]

    [25]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833

    [26]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477

    [27]

    Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887

    [28]

    Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959

    [29]

    Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616

    [30]

    Peterson R G, Richard C. 1978 J. Lumin. 16 285

    [31]

    Shannon R D 1976 Acta Crystallogr A 32 751

    [32]

    Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291

    [33]

    Blasse G 1973 Chem. Phys. Lett. 20 573

    [34]

    Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483

    [35]

    Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [36]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [37]

    Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930

    [38]

    Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862

    [39]

    Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277

    [40]

    Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470

    [41]

    Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709

  • [1]

    Su Q, Wu H, Pan Y X, Xu J, Guo C F, Zhang X M, Zhang J H, Wang J, Zhang M 2005 J. Rare Earth Soc. 5 513 (in Chinese) [苏锵, 吴昊, 潘跃晓, 徐剑, 郭崇峰, 张新民, 张剑辉, 王静, 张梅 2005 中国稀土学报 5 513]

    [2]

    Cao R P, Peng M Y, Qiu J R 2012 Opt. Express 20 977

    [3]

    Ju G F, Hu Y H, Wu H Y, Yang Z F, Fu C J, Mu Z F, Kang F W 2011 Opt. Mater. 33 1297

    [4]

    Guo C F, Xu Y, L F, Ding X 2010 J. Alloy. Compd. 497 21

    [5]

    Mu Z F, Wang Y H, Hu Y H, Wu H Y, Deng L Y, Xie W, Fu C J, Liao C X 2011 Acta Phys. Sin. 60 013201 (in Chinese) [牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴 2011 物理学报 60 013201]

    [6]

    Li X, Guan L, An J Y, Jin L T, Yang Z P, Yang Y M, Li P L, Fu G S 2011 Chin. Phys. Lett. 28 027805

    [7]

    Mu Z F, Hu Y H, Chen L, Wang X J 2011 J. Lumin. 131 1687

    [8]

    Kang F W, Hu Y H, Wu H Y, Ju G F, Mu Z F, Li N N 2011 J. Rare Earths 29 837

    [9]

    Zhang J H, Zhu D Q, Wang J X 2012 Semicond. Optoelectron. 33 667 (in Chinese) [张锦华, 朱大庆, 王加贤 2012 半导体光电 33 667]

    [10]

    Li Y Q, Steen J, Krevel J, Botty G, Delsing A, DiSalvo F, With G, Hintzen H 2006 J. Alloy. Compd. 417 273

    [11]

    Yang J J, Wang T, Chen D C, Chen G D, Liu Q L 2012 Mater. Sci. Eng. B 177 1596

    [12]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y, Mu Z F 2013 J. Lumin. 135 113

    [13]

    Spassky D, Mikhailin V, Nazarov M, Ahmad-Fauzi M, Zhbanov A 2012 J. Lumin. 132 2753

    [14]

    Wang W X, Pang P P, Cheng Z Y, Hou Z Y, Li C X, Lin 2011 ACS Appl. Mater. Inter. 3 3921

    [15]

    Treadaway M J, Powell R C 1974 J. Chem. Phys. 61 4003

    [16]

    Kang F W, Hu Y H, Wu H Y, Ju G F 2011 Chin. Phys. Lett. 28 107201

    [17]

    Zorenko Y, Pashkovsky M, Voloshinovskii A, Kuklinski B 2006 J. Lumin. 116 43

    [18]

    Wu H Y, Hu Y H, Kang F W, Li N N, Ju G F, Mu Z F, Yang Z F 2012 J. Am. Ceram. Soc. 95 3214

    [19]

    Wu H Y, Hu Y H, Kang F W, Chen L, Wang X J, Ju G F, Mu Z F 2011 Mater. Res. Bull. 46 2489

    [20]

    Jin Y H, Hu Y H, Chen L, Wang X J, Mu Z F, Wu H Y, Ju G F 2013 Radiat. Meas. 51-52 18

    [21]

    Yang P P, Quan Z W, Li C X, Lian H Z, Huang S S, Lin J 2008 Micropor. Mesop. Mat. 116 524

    [22]

    Gao Y, L Q, Wang Y, Liu Z B 2012 Acta Phys. Sin. 61 078802 (in Chinese) [高杨, 吕强, 汪洋, 刘占波 2012 物理学报 61 078802]

    [23]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [24]

    Liu Z W, Liu Y L, Yuan D S, Zhang J X, Rong J H, Huang L H 2004 J. Inorg. Chem. 20 1433 (in Chinese) [刘正伟, 刘应亮, 袁定胜, 张静娴, 容建华, 黄浪欢 2004 无机化学学报 20 1433]

    [25]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2012 Appl. Phys. B 107 833

    [26]

    Kang F W, Hu Y H, Chen L, Wang X J, Wu H Y 2013 Mater. Sci. Eng. B 178 477

    [27]

    Kang F W, Hu Y H, Wu H Y, Mu Z F, Ju G F, Fu C J, Li N N 2012 J. Lumin. 132 887

    [28]

    Wu H Y, Hu Y H, Kang F W, Li N N 2012 J. Mater. Res. 27 959

    [29]

    Shi S K, Gao J, Zhou 2008 Opt. Mater. 30 1616

    [30]

    Peterson R G, Richard C. 1978 J. Lumin. 16 285

    [31]

    Shannon R D 1976 Acta Crystallogr A 32 751

    [32]

    Nazarov M V, Tsukerblat B S, Popovici E J, Jeon D Y J 2004 Phys. Lett. A 330 291

    [33]

    Blasse G 1973 Chem. Phys. Lett. 20 573

    [34]

    Hebbink G A, Grave L, Woldering L A, Reinhoudt D N, van Veggel F C M J 2003 J. Phys. Chem. 107 2483

    [35]

    Vergeer P, Vlugt T J H, Kox M H F, Den Hertog M I, van der Eerden J P J M, Meijerink A 2005 Phys. Rev. B 71 014119

    [36]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids 64 841

    [37]

    Balaji S, Mandal A K, Annapurna K 2012 Opt. Mater. 34 1930

    [38]

    Treadaway M J, Powell R C 1975 Phys. Rev. B 11 862

    [39]

    Peng H S, Song H W, Chen B J, Wang J W, Lu S Z 2003 J. Chem. Phys. 118 3277

    [40]

    Song H W, Yu L X, Lu S Z, Wang T, Liu Z X 2004 Appl. Phys. Lett. 85 470

    [41]

    Riwotzki K, Haase M 2001 J. Phys. Chem. 105 12709

  • [1] Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Energy transfer characteristics of single-particle NaYF4 core-shell structure. Acta Physica Sinica, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [2] Zhao Wang,  Ping Zhao-Yan,  Zheng Qing-Hua,  Zhou Wei-Wei. Concentration and thermal quenching of SrGdLiTeO6: Eu3+ red-emitting phosphor for white light-emitting diode. Acta Physica Sinica, 2018, 67(24): 247801. doi: 10.7498/aps.67.20181523
    [3] Lü Zhao-Cheng, Li Ying, Quan Gui-Ying, Zheng Qing-Hua, Zhou Wei-Wei, Zhao Wang. Preparation and photoluminescent properties of near-UV broadband-excited red phosphor (Gd1-xEux)6(Te1-yMoy)O12 for white-LEDs. Acta Physica Sinica, 2017, 66(11): 117801. doi: 10.7498/aps.66.117801
    [4] Su Xiao-Na, Wan Ying, Zhou Zhi-Xuan, TushaguAbuduwufu, Hu Lian-Lian, AierkenSidike. Luminescence properties and energy transfer of Na2CaSiO4:Sm3+, Eu3+ phosphor. Acta Physica Sinica, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [5] Xiong Xiao-Bo, Liu Wan-Li, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi, Liang Yu-Jun. Photoluminescence properties and energy transfer of SrZn2(PO4)2:Sn2+, Mn2+ phosphor. Acta Physica Sinica, 2015, 64(24): 247801. doi: 10.7498/aps.64.247801
    [6] Xiong Xiao-Bo, Yuan Xi-Ming, Liu Jin-Cun, Song Jiang-Qi. Photoluminescence properties and energy transfer from Ce3+ to Mn2+ in Na2SrMg(PO4)2. Acta Physica Sinica, 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [7] Mi Rui-Yu, Xia Zhi-Guo, Liu Hai-Kun. Luminescent properties and energy transfer in Ca4Y6 (SiO4)6F2: Ce3+, Mn2+ phosphor. Acta Physica Sinica, 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [8] Bi Chang-Hong, Meng Qing-Yu. Luminescent properties and energy transfer mechanism of CaWO4:Sm3+ phosphors. Acta Physica Sinica, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [9] Sang Shi-Jing, Lü Shu-Chen, Qu Xiu-Rong, Yang Xiao-Xu, Zhang Li-Li. Preparation of ZrO2:Eu3+-Bi3+ phosphor and Bi3+ sensitizing characteristic emission of Eu3+ ions. Acta Physica Sinica, 2012, 61(22): 227801. doi: 10.7498/aps.61.227801
    [10] Zhong Rui-Xia, Zhang Jia-Hua, Li Ming-Ya, Wang Xiao-Qiang. Luminescent properties and energy transfer in MAl12O19: Eu2+, Cr3+ (M = Ca, Sr, Ba). Acta Physica Sinica, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [11] Wang Qian, Ci Zhi-Peng, Wang Yu-Hua, Zhu Ge, Wen Yan, Liu Bi-Tao, Que Mei-Dan. Preparation and luminescence properties of a red phosphor Mg5SnB2O10:Eu3+, Bi3+ for light emitting diode. Acta Physica Sinica, 2012, 61(21): 217802. doi: 10.7498/aps.61.217802
    [12] Meng Qing-Yu, Zhang Qing, Li Ming, Liu Lin-Feng, Qu Xiu-Rong, Wan Wei-Long, Sun Jiang-Ting. Study of concentration dependence of luminescent properties for Eu3+ doped CaWO4 red phosphors. Acta Physica Sinica, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [13] Feng Xiao-Hui, Meng Qing-Yu, Sun Jiang-Ting, Lü Shu-Chen, Sun Li-nan. Luminescent properties of Eu3+ doped Gd2W2O9 and Gd2(WO4)3 nanophosphors. Acta Physica Sinica, 2011, 60(3): 037806. doi: 10.7498/aps.60.037806
    [14] Yang Zhi-Ping, Yang Guang-Wei, Wang Shao-Li, Tian Jing, Li Pan-Lai, Li Xu. Luminescence and energy transfer of Eu2+, Mn2+ in BaZnP2O7. Acta Physica Sinica, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [15] Chen Gan-Xin, Zhang Qin-Yuan, Yang Gang-Feng, Yang Zhong-Min, Jiang Zhong-Hong. 2.0 μm emission properties and energy transfer of Tm3+/Ho3+-codoped tellurite glass. Acta Physica Sinica, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [16] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [17] Shi Dong-Mei, Zhang Qin-Yuan, Yang Gang-Feng, Jiang Zhong-Hong. Spectroscopic properties and energy transfer of Tm3+/Ho3+-codoped Ga2O3-Bi2O3-GeO2-PbO-PbF2 glasses for 1.47μm luminecence. Acta Physica Sinica, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [18] Fu Shi-Liu, Yin Tao, Ding Qiu-Ke, Zhao Wei-Ren. Investigation of the photoluminescence of Eu3+ doped Sr2CeO4 phosphor. Acta Physica Sinica, 2006, 55(9): 4940-4945. doi: 10.7498/aps.55.4940
    [19] Sun Shi-Ju, Teng Feng, Xu Zheng, Zhang Yan-Fen, Hou Yan-Bing. Luminescence properties and energy transfer in the mixed thin film of Alq3 and PVK. Acta Physica Sinica, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [20] LI DAN, Lü SHAO-ZHE, CHEN BAO-JIU, WANG HAI-YU, TANG BO, ZHANG JIA-HUA, HOU SHANG-GONG, HUANG SHI-HUA. STUDY OF ENERGY-TRANSFER INTERACTIONS BETWEEN Eu3+ IONS IN Y2O3 NANOCRYSTALS . Acta Physica Sinica, 2001, 50(5): 933-937. doi: 10.7498/aps.50.933
Metrics
  • Abstract views:  8878
  • PDF Downloads:  862
  • Cited By: 0
Publishing process
  • Received Date:  23 May 2013
  • Accepted Date:  14 June 2013
  • Published Online:  05 September 2013

/

返回文章
返回