Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Upconversion white-light emission luminescence characteristics based on single-particle NaYF4 microrod

Gao Wei Shao Lin Han Shan-Shan Xing Yu Zhang Jing-Jing Chen Bin-Hui Han Qing-Yan Yan Xue-Wen Zhang Cheng-Yun Dong Jun

Citation:

Upconversion white-light emission luminescence characteristics based on single-particle NaYF4 microrod

Gao Wei, Shao Lin, Han Shan-Shan, Xing Yu, Zhang Jing-Jing, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun
PDF
HTML
Get Citation
  • White upconversion (UC) luminescent materials have shown incomparable advantages over other light sources in the fields of solid-state lighting, liquid crystal display, and bioimaging, and received extensive attention from researchers. In this work, a series of microcrystals doped with different ion concentrations is synthesized by hydrothermal method, such as NaYF4: Yb3+/Ho3+/Tm3+ and NaYF4: Yb3+/Ho3+/Tm3+, and their corresponding micron core-shell (CS) structures are constructed based on epitaxial growth technology. The structure and morphology of the prepared microcrystals are characterised by X-ray diffractometer (XRD) and scanning electron microscope (SEM), showing that the microcrystal has a pure hexagonal-phase crystal structure with a rod-like shape. Under the excitation of 980 nm near-infrared laser, the white UC luminescence characteristics of Ho3+/Tm3+ and Er3+/Tm3+ co-doped single-particle NaYF4 microcrystals are systematically studied by modulating the concentration of the doping ions. The study shows that in Ho3+/Tm3+ co-doped NaYF4 microcrystals, white UC luminescence can be easily achieved by modulating the concentration of Yb3+ ions, while in the Er3+/Tm3+ co-doped NaYF4 microcrystal, the white UC luminescence can be effectively achieved by modulating the concentration of Er3+ ions. According to the luminescence characteristics of the microncrystals in different doping systems, the physical mechanism of white light emission regulation is revealed, which is mainly due to the interaction between the doped ions, including cross relaxation (CR) process and energy back transfer (EBT) process. Meanwhile, an effective enhancement of the white UC luminescence on CS microrod is achieved by coating the NaYF4 inert shell. Therefore, ion doping technique and the construction of CS structure can not only realize the white UC luminescence of microrods, but also provide important experimental reference for further enhancing the luminescence characteristics of microrods, and expand the applications of microcrystals in the fields of display, optoelectronics and anti-counterfeiting.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn ; Dong Jun, dongjun@xupt.edu.cn
    • Funds: The project supported by the National Science Foundation of China (Grant Nos. 12004304, 12104366), the Key R & D Project of Shaanxi Province, China (Grant No. 2022SF-333), the Research Plan for Young Scientific and Technological New Stars of Shaanxi Province, China (Grant No. 2021KJXX-45), the Key Project of Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JZ-05), the Youth Project of Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JQ-041), and the Xi’an University of Posts and Telecommunications Joint Postgraduate Cultivation Workstation, China (Grant No. CXJJZL2021003).
    [1]

    Shao L, Liu D, Lyu J, Zhou D, Ding N, Sun R, Xu W, Wang N, Xu S, Dong B, Song H 2021 Mater. Today Phys. 21 100495Google Scholar

    [2]

    Hao S, Shang Y F, Hou Y D, Chen T, Lv W Q, Hu P G, Yang C H 2021 Sol. Energy 224 563Google Scholar

    [3]

    Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W 2019 Adv. Mater. 31 1807900Google Scholar

    [4]

    Gao L X, Shan X C, Xu X X, Liu Y T, Liu B L, Li S Q, Wen S H, Ma C S, Jin D Y, Wang F 2020 Nanoscale 12 18595Google Scholar

    [5]

    Liang H Z, Lei W C, Liu S X, Zhang P, Luo Z W, Lu A X 2021 Opt. Mater. 119 111320Google Scholar

    [6]

    Du P, Bharat L K, Yu J S 2015 J. Alloys Compd. 633 37Google Scholar

    [7]

    Ray S K, Joshi B, Ramani S, Park S, Hur J 2022 J. Alloys Compd. 892 162101Google Scholar

    [8]

    Bao S, Yu H Y, Gao G Y, Zhu H Y, Wang D S, Zhu P F, Wang G F 2021 Nano Res. 15 3594

    [9]

    Li G G, Tian Y, Zhao Y, Lin J 2015 Chem. Soc. Rev. 44 8688Google Scholar

    [10]

    Luitel H N, Chand R, Watari T 2016 Displays 42 1Google Scholar

    [11]

    Vinodkumar P, Panda S, Jaiganesh G, Padhi R K, Madhusoodanan U, Panigrahi B S 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 253 119560

    [12]

    Meng Z P, Zhang S F, Wu S L 2020 J. Lumin. 227 117566Google Scholar

    [13]

    Long S W, Ma D C, Zhu Y Z, Yang M M, Lin S P, Wang B 2017 J. Lumin. 192 728Google Scholar

    [14]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2021 Nanotechnology 33 082001Google Scholar

    [15]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 CrystEngComm 13 3782Google Scholar

    [16]

    Lin H, Xu D K, Teng D D, Yang S H, Zhang Y L 2015 Luminescence 30 723Google Scholar

    [17]

    Pathak T K, Kumar A, Erasmus L J B, Pandey A, Coetsee E, Swart H C, Kroon R E 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 23

    [18]

    Hassairi M A, Hernandez A G, Dammak M, Zambon D, Chadeyron G, Mahiou R 2018 J. Lumin. 203 707Google Scholar

    [19]

    Xiao P, Ye S, Liao H Z, Shi Y L, Wang D P 2019 J. Solid State Chem. 275 63Google Scholar

    [20]

    Ju D D, Song F, Han Y D, Zhang J, Song F F, Zhou A H, Huang W, Zadkov V 2019 J. Alloys Compd. 787 1120Google Scholar

    [21]

    Ju D D, Gao X L, Zhang S C, Li Y, Cui W J, Yang Y H, Luo M Y, Liu S J 2021 CrystEngComm 23 3892Google Scholar

    [22]

    高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 034207Google Scholar

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207Google Scholar

    [23]

    高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军 2020 物理学报 69 034207Google Scholar

    Gao W, Wang B Y, Sun Z Y, Gao L, Zhang C X, Han Q Y, Dong J 2020 Acta Phys. Sin. 69 034207Google Scholar

    [24]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [25]

    Bao H Q, Wang W, Li X, et al. 2021 Adv. Opt. Mater. 10 2101702Google Scholar

    [26]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269Google Scholar

    [27]

    Tang J F, Li G N, Yang C, Gou J, Luo D H, He H 2015 CrystEngComm 17 9048Google Scholar

    [28]

    Sun J Y, Xue B, Du H Y 2013 Mat. Sci. Eng. B 178 822Google Scholar

    [29]

    Wu Y F S, Lai F Q, Liu B, Li Z B, Liang T X, Qiang Y C, Huang J H, Ye X Y, You W X 2020 J. Rare Earths 38 130Google Scholar

    [30]

    Zhang C M, Ma P A, Li C X, Li G G, Huang S S, Yang D M, Shang M M, Kang X J, Lin J 2011 J. Mater. Chem. 21 717Google Scholar

    [31]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compds. 857 157578Google Scholar

    [32]

    Kuang Y, Xu J, Wang C, Li T Y, Gai S L, He F, Yang P P, Lin J 2019 Chem. Mater. 31 7898Google Scholar

    [33]

    Yu Z C, Zhou H F, Zhou G J, et al. 2017 Phys. Chem. Chem. Phys. 19 31675Google Scholar

    [34]

    Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [35]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdia A, Zhao S L 2022 J. Alloys Compd. 891 162067Google Scholar

    [36]

    Huo L L, Zhou J J, Wu R Z, Ren J F, Zhang S J, Zhang J J, Xu S Q 2016 Opt. Mater. Express 6 1056Google Scholar

    [37]

    Pang T, Cao W H, Xing M M, Luo X X, Yang X F 2011 Opt. Mater. 33 485Google Scholar

    [38]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [39]

    Jeong S H, Kshetri Y K, Kim S H, Cho S H, Lee S W 2019 Prog. Nat. Sci. 29 549Google Scholar

    [40]

    Pollnau M, Gamelin D R, Lüthi S R, Güdel H U 2000 Phys. Rev. B 61 3337Google Scholar

    [41]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 CrystEngComm 16 6697Google Scholar

  • 图 1  NaYF4 : 9% Yb3+/ 2% Ho3+/2% Tm3+, NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+微米晶体及其核壳微米棒的XRD图谱

    Figure 1.  XRD patterns of NaYF4 : 9% Yb3+/2% Ho3+/2% Tm3+, NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+ microcrystals and their core-shell microrods.

    图 2  NaYF4: 9% Yb3+/2% Ho3+/2% Tm3+, NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+微米晶体及其核壳微米棒的(a1)—(a4) SEM图像, (b1)—(b4)元素映射图, (c1)—(c4)尺寸分布图

    Figure 2.  (a1)–(a4) SEM images, (b1)–(b4) element maps and (c1)–(c4) size distribution of NaYF4: 9% Yb3+/2% Ho3+/2% Tm3+ and NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+ microcrystals and their core-shell microcrystals.

    图 3  共聚焦显微光谱测试系统示意图

    Figure 3.  Schematic diagram of the confocal microscope spectroscopic test system.

    图 4  在980 nm激光激发下, 单颗粒NaYF4 : x% Yb3+/2% Ho3+/2% Tm3+ (x = 6, 7, 8, 9)微米棒的(a)上转换发射光谱, (b)红光、绿光和蓝光的发射峰面积, (c)红绿比、蓝绿比和(d) CIE色度坐标图

    Figure 4.  (a) The UC emission spectra, (b) the peak area of the bule, green and red emission intensity, (c) R/G ratio, B/G ratio and (d) CIE chromaticity coordinates of single-particle NaYF4 : x% Yb3+/2% Ho3+/2% Tm3+ (x = 6, 7, 8, 9) microrods under the excitation of 980 nm NIR laser.

    图 5  在980 nm激光激发下, 单颗粒NaYF4 : 36% Yb3+/x% Er3+/2% Tm3+ (x = 0.5, 1.0, 1.5, 2.0)微米棒的(a)上转换发射光谱; (b)红光、绿光和蓝光的发射峰面积; (c)红绿比、蓝绿比以及(d) CIE色度坐标图

    Figure 5.  (a) The UC emission spectra, (b) the peak area of the bule, green and red emission intensity, (c) R/G ratio, B/G ratio and (d) CIE chromaticity coordinates of single-particle NaYF4 : 36% Yb3+/x% Er3+/2% Tm3+ (x = 0.5, 1.0, 1.5, 2.0) microrods under the excitation of 980 nm NIR laser.

    图 6  在980 nm激光激发下, 单颗粒(a) NaYF4 : 9% Yb3+/2% Ho3+/2% Tm3+, (b) NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+微米棒及其惰性核壳结构的发射光谱, (c), (e)红光、绿光和蓝光的发射峰面积和(d), (f)增强倍数

    Figure 6.  (a)(b) The UC emission spectra, (c)(e) the peak area of the bule, green and red emission intensity and (d)(f) enhancement of single-particle NaYF4 : 9% Yb3+/2% Ho3+/2% Tm3+, NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+ and its inert core-shell microrods under the excitation of 980 nm NIR laser.

    图 7  在980 nm激光激发下, (a) NaYF4 : Yb3+/Ho3+/Tm3+及(b) NaYF4 : Yb3+/Er3+/Tm3+共掺体系的能量传递及其可能的跃迁机制图

    Figure 7.  Energy transfer and possible transition mechanism of (a) NaYF4 : Yb3+/Ho3+/Tm3+ and (b) NaYF4 : Yb3+/Er3+/Tm3+ co-doped systems under excitation of 980 nm NIR laser.

    图 8  在不同功率980 nm激光激发下, 单颗粒NaYF4 : 9% Yb3+/2% Ho3+/2% Tm3+及NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+微棒的(a)(d)发射光谱, (b)(e) 红光、绿光和蓝光的发射峰面积(插图为对应的R/G比值、B/G比值), 及(c)(f) 泵浦功率依赖关系

    Figure 8.  (a)(d) The UC emission spectra, (b)(e) the peak area of the bule, green and red emission intensity (insets show the corresponding R/G ratio, B/G ratio) and (c)(f) pump power dependences of single-particle NaYF4 : 9% Yb3+/2% Ho3+/2% Tm3+, NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+.

    图 A1  980 nm激光激发下, 单颗粒NaYF4:x% Yb3+/2% Ho3+/2% Tm3+(x = 5, 10, 15, 18)微米棒的(a)上转换发射光谱, (b)红光、绿光、蓝光发射峰面积以及(c)红绿比、蓝绿比

    Figure A1.  (a) The UC emission spectra, (b) the peak area of the bule, green and red emission intensity, (c) R/G ratio, B/G ratio of single-particle NaYF4: x% Yb3+/2% Ho3+/2% Tm3+ (x = 5, 10, 15, 18) microrods under the excitation of 980 nm NIR laser.

    图 A2  980 nm激光激发下, 单颗粒NaYF4:x% Yb3+/2% Er3+/2% Tm3+(x = 10, 20, 30, 40, 45, 50)微米棒的(a)上转换发射光谱, (b)红光、绿光、蓝光发射峰面积以及(c)红绿比、蓝绿比

    Figure A2.  (a) The UC emission spectra, (b) the peak area of the bule, green and red emission intensity and (c) R/G ratio, B/G ratio of single-particle NaYF4:x% Yb3+/2% Er3+/2% Tm3+(x = 10, 20, 30, 40, 45, 50) microrods under the excitation of 980 nm NIR laser.

    图 A3  980 nm激光激发下, 单颗粒NaYF4:x% Yb3+/2% Er3+/2% Tm3+ (x = 32, 34, 36, 38)微米棒的(a)上转换发射光谱, (b)红光、绿光、蓝光发射峰面积以及(c)红绿比、蓝绿比

    Figure A3.  (a) The UC emission spectra, (b) the peak area of the bule, green and red emission intensity and (c) R/G ratio, B/G ratio of single-particle NaYF4:x% Yb3+/2% Er3+/2% Tm3+ (x = 32, 34, 36, 38) microrods under the excitation of 980 nm NIR laser.

    表 1  水热法制备微米晶体所需药品的详细参数

    Table 1.  Detailed parameters of medicines for the preparation of the microcrystals by hydrothermal method.

    样品核体积/mLEDTA-2Na/gRe(NO3)3/mLNaF/mLNH4HF2/mL
    NaYF4:Yb3+/Ho3+/Tm3+0.2821.505.006.00
    NaYF4:Yb3+/Er3+/Tm3+0.2821.505.006.00
    NaYF4:Yb3+/Ho3+/Tm3+@NaYF450.2821.505.006.00
    NaYF4:Yb3+/Er3+/Tm3+@NaYF450.2821.505.006.00
    注: Re(NO3)3, NaF和NH4HF2溶液浓度均为0.5 mol/L.
    DownLoad: CSV

    表 2  单个NaYF4 : x% Yb3+/2% Ho3+/2% Tm3+(x = 6, 7, 8, 9)微米棒的CIE色度坐标

    Table 2.  CIE coordinates of single-particle NaYF4 : x% Yb3+/2% Ho3+/2% Tm3+ (x = 6, 7, 8, 9) microrods.

    SamplesCIE chromaticity coordinate
    xy
    NaYF4 : 6% Yb3+/2% Ho3+/2% Tm3+0.31230.3824
    NaYF4 : 7% Yb3+/2% Ho3+/2% Tm3+0.32150.3456
    NaYF4 : 8% Yb3+/2% Ho3+/2% Tm3+0.33830.3932
    NaYF4 : 9% Yb3+/2% Ho3+/2% Tm3+0.32840.3401
    DownLoad: CSV

    表 3  单个NaYF4 : 36% Yb3+/x% Er3+/2% Tm3+ (x = 0.5, 1.0, 1.5, 2.0)微米棒的CIE色度坐标

    Table 3.  CIE coordinates of single-particle NaYF4 : 36% Yb3+/x% Er3+/2% Tm3+ (x = 0.5, 1.0, 1.5, 2.0) microrods.

    SamplesCIE chromaticity coordinate
    xy
    NaYF4 : 36% Yb3+/0.5% Er3+/2% Tm3+ 0.26040.3661
    NaYF4 : 36% Yb3+/1.0% Er3+/2% Tm3+0.32810.3204
    NaYF4 : 36% Yb3+/1.5% Er3+/2% Tm3+0.32160.3748
    NaYF4 : 36% Yb3+/2.0% Er3+/2% Tm3+0.30180.4854
    DownLoad: CSV
  • [1]

    Shao L, Liu D, Lyu J, Zhou D, Ding N, Sun R, Xu W, Wang N, Xu S, Dong B, Song H 2021 Mater. Today Phys. 21 100495Google Scholar

    [2]

    Hao S, Shang Y F, Hou Y D, Chen T, Lv W Q, Hu P G, Yang C H 2021 Sol. Energy 224 563Google Scholar

    [3]

    Liu H L, Xu J H, Wang H, Liu Y J, Ruan Q F, Wu Y M, Liu X G, Yang J K W 2019 Adv. Mater. 31 1807900Google Scholar

    [4]

    Gao L X, Shan X C, Xu X X, Liu Y T, Liu B L, Li S Q, Wen S H, Ma C S, Jin D Y, Wang F 2020 Nanoscale 12 18595Google Scholar

    [5]

    Liang H Z, Lei W C, Liu S X, Zhang P, Luo Z W, Lu A X 2021 Opt. Mater. 119 111320Google Scholar

    [6]

    Du P, Bharat L K, Yu J S 2015 J. Alloys Compd. 633 37Google Scholar

    [7]

    Ray S K, Joshi B, Ramani S, Park S, Hur J 2022 J. Alloys Compd. 892 162101Google Scholar

    [8]

    Bao S, Yu H Y, Gao G Y, Zhu H Y, Wang D S, Zhu P F, Wang G F 2021 Nano Res. 15 3594

    [9]

    Li G G, Tian Y, Zhao Y, Lin J 2015 Chem. Soc. Rev. 44 8688Google Scholar

    [10]

    Luitel H N, Chand R, Watari T 2016 Displays 42 1Google Scholar

    [11]

    Vinodkumar P, Panda S, Jaiganesh G, Padhi R K, Madhusoodanan U, Panigrahi B S 2021 Spectrochim. Acta A Mol. Biomol. Spectrosc. 253 119560

    [12]

    Meng Z P, Zhang S F, Wu S L 2020 J. Lumin. 227 117566Google Scholar

    [13]

    Long S W, Ma D C, Zhu Y Z, Yang M M, Lin S P, Wang B 2017 J. Lumin. 192 728Google Scholar

    [14]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2021 Nanotechnology 33 082001Google Scholar

    [15]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 CrystEngComm 13 3782Google Scholar

    [16]

    Lin H, Xu D K, Teng D D, Yang S H, Zhang Y L 2015 Luminescence 30 723Google Scholar

    [17]

    Pathak T K, Kumar A, Erasmus L J B, Pandey A, Coetsee E, Swart H C, Kroon R E 2018 Spectrochim. Acta A Mol. Biomol. Spectrosc. 207 23

    [18]

    Hassairi M A, Hernandez A G, Dammak M, Zambon D, Chadeyron G, Mahiou R 2018 J. Lumin. 203 707Google Scholar

    [19]

    Xiao P, Ye S, Liao H Z, Shi Y L, Wang D P 2019 J. Solid State Chem. 275 63Google Scholar

    [20]

    Ju D D, Song F, Han Y D, Zhang J, Song F F, Zhou A H, Huang W, Zadkov V 2019 J. Alloys Compd. 787 1120Google Scholar

    [21]

    Ju D D, Gao X L, Zhang S C, Li Y, Cui W J, Yang Y H, Luo M Y, Liu S J 2021 CrystEngComm 23 3892Google Scholar

    [22]

    高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 034207Google Scholar

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207Google Scholar

    [23]

    高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军 2020 物理学报 69 034207Google Scholar

    Gao W, Wang B Y, Sun Z Y, Gao L, Zhang C X, Han Q Y, Dong J 2020 Acta Phys. Sin. 69 034207Google Scholar

    [24]

    Gao W, Zhang C X, Han Q Y, Lu Y R, Yan X W, Wang Y K, Yang Y, Liu J H, Dong J 2022 J. Lumin. 241 118501Google Scholar

    [25]

    Bao H Q, Wang W, Li X, et al. 2021 Adv. Opt. Mater. 10 2101702Google Scholar

    [26]

    Tong L M, Lu E, Pichaandi J, Zhao G Y, Winnik M A 2016 J. Phys. Chem. C 120 6269Google Scholar

    [27]

    Tang J F, Li G N, Yang C, Gou J, Luo D H, He H 2015 CrystEngComm 17 9048Google Scholar

    [28]

    Sun J Y, Xue B, Du H Y 2013 Mat. Sci. Eng. B 178 822Google Scholar

    [29]

    Wu Y F S, Lai F Q, Liu B, Li Z B, Liang T X, Qiang Y C, Huang J H, Ye X Y, You W X 2020 J. Rare Earths 38 130Google Scholar

    [30]

    Zhang C M, Ma P A, Li C X, Li G G, Huang S S, Yang D M, Shang M M, Kang X J, Lin J 2011 J. Mater. Chem. 21 717Google Scholar

    [31]

    Gao W, Sun Z Y, Han Q Y, Han S S, Cheng X T, Wang Y K, Yan X W, Dong J 2021 J. Alloys Compds. 857 157578Google Scholar

    [32]

    Kuang Y, Xu J, Wang C, Li T Y, Gai S L, He F, Yang P P, Lin J 2019 Chem. Mater. 31 7898Google Scholar

    [33]

    Yu Z C, Zhou H F, Zhou G J, et al. 2017 Phys. Chem. Chem. Phys. 19 31675Google Scholar

    [34]

    Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [35]

    Wu Q X, Xu Z, Wageh S, Al-Ghamdia A, Zhao S L 2022 J. Alloys Compd. 891 162067Google Scholar

    [36]

    Huo L L, Zhou J J, Wu R Z, Ren J F, Zhang S J, Zhang J J, Xu S Q 2016 Opt. Mater. Express 6 1056Google Scholar

    [37]

    Pang T, Cao W H, Xing M M, Luo X X, Yang X F 2011 Opt. Mater. 33 485Google Scholar

    [38]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [39]

    Jeong S H, Kshetri Y K, Kim S H, Cho S H, Lee S W 2019 Prog. Nat. Sci. 29 549Google Scholar

    [40]

    Pollnau M, Gamelin D R, Lüthi S R, Güdel H U 2000 Phys. Rev. B 61 3337Google Scholar

    [41]

    Gao W, Zheng H R, Han Q Y, He E J, Wang R B 2014 CrystEngComm 16 6697Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] Meng Yong-Jun, Li Hong, Tang Jian-Wei, Chen Xue-Wen. Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [4] Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Energy transfer characteristics of single-particle NaYF4 core-shell structure. Acta Physica Sinica, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [5] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [7] Modulation of the upconversion luminescence spectrum of a single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211438
    [8] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [9] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [10] Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Physica Sinica, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [11] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [12] Zhang Xiang-Yu, Ma Ying-Xiang, Xu Chun-Long, Ding Jian, Quan Hong-Juan, Hou Zhao-Yang, Shi Gang, Qin Ning, Gao Dang-Li. Spectroscopic exploration of upconversion luminescence behavior of rare earth-doped single-particle micro/nanocrystals. Acta Physica Sinica, 2018, 67(18): 183301. doi: 10.7498/aps.67.20172191
    [13] Xie Di-Ni, Peng Hong-Shang, Huang Shi-Hua, You Fang-Tian, Wang Xiao-Hui. Hydrothermal diffusion of Eu3+ in EuVO4@YVO4 core-shell nanoparticles and its influence on luminescent properties. Acta Physica Sinica, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [14] Li Shi-Shuai, Zhang Zhong, Huang Jin-Zhao, Feng Xiu-Peng, Liu Ru-Xi. Preparation and mechanism of In-doped ZnO emitting white-light. Acta Physica Sinica, 2011, 60(9): 097405. doi: 10.7498/aps.60.097405
    [15] Xiao Kai, Yang Zhong-Min, Feng Zhou-Ming. Upconversion luminescence mechanisms of Er3+-doped barium gallogermanate glasses. Acta Physica Sinica, 2007, 56(6): 3178-3184. doi: 10.7498/aps.56.3178
    [16] Xu Shi-Qing, Jin Shang-Zhong, Zhao Shi-Long, Zhang Li-Yan, Wang Bao-Ling, Wang Wei, Bao Ren-Qiang, Zhang Jue. Upconversion luminescence of Tm3+/Yb3+-codoped oxyhalide tellurite glasses. Acta Physica Sinica, 2007, 56(5): 2714-2718. doi: 10.7498/aps.56.2714
    [17] Liu Hai-Lan, Gu Mu, Zhang Rui, Xu Rong-Kun, Li Guang-Wu, Ouyang Xiao-Ping. Electronic structure of intrinsic defects and mechanism of donor-acceptor pair luminescence in CuI crystal. Acta Physica Sinica, 2006, 55(12): 6574-6579. doi: 10.7498/aps.55.6574
    [18] Xu Shi-Qing, Zhang Zai-Xuan, Fang Da-Wei, Dong Qian-Min, Jiang Zhong-Hong. Upconversion luminescence of lead halide-modified Tm3+/Yb3+-codoped tellurite glasses. Acta Physica Sinica, 2005, 54(8): 3694-3697. doi: 10.7498/aps.54.3694
    [19] Zhang Chun-Xiang, Lin Li-Bin, Tang Qiang, Luo Da-Ling. Study on 3D thermoluminescence spectra in sapphire:Mn. Acta Physica Sinica, 2004, 53(11): 3940-3944. doi: 10.7498/aps.53.3940
    [20] Xu Shi-Qing, Wang Guo-Nian, Zhang Jun-Jie, Dai Shi-Xun, Hu Li-Li, Jiang Zhong-Hong. The upconversion luminescence research of Er3+-doped heavy metal oxyfluorosilicate glasses. Acta Physica Sinica, 2004, 53(6): 1840-1844. doi: 10.7498/aps.53.1840
Metrics
  • Abstract views:  2833
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  10 August 2022
  • Accepted Date:  04 October 2022
  • Available Online:  19 October 2022
  • Published Online:  20 January 2023

/

返回文章
返回