Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures

Dong Jun Zhang Chen-Xue Cheng Xiao-Tong Xing Yu Han Qing-Yan Yan Xue-Wen Qi Jian-Xia Liu Ji-Hong Yang Yi Gao Wei

Citation:

Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures

Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei
PDF
HTML
Get Citation
  • The red upconversion (UC) emission of Ho3+ ions is located in an “optical window” range of the biological tissue, which has great prospects in the biology application. In this work, the NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x%Yb3+ and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x%Nd3+ core-shell (CS) nanoparticles (NPs) are built based on the epitaxial growth technology by the high-temperature co-precipitation method in order to enhance red UC emission. The crystal structure and morphology of NaYF4 CS NPs are characterized by X-ray diffraction and transmission electron microscope. It can be found that the morphology of NaYF4 CS NPs changes from sphere into rod shape when coated with NaYF4 shell, and has a pure hexagonal-phase crystal structure. Under 980 nm excitation, the red UC emission intensity of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ CS NPs is strongest and enhanced about 5.2 times than that of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs. Under 800 nm excitation, the red emission intensity of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs is increased about 6.1 times compared with that of the NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/5%Nd3+ CS NPs. This is because the constructed CS effectively reduces the non-radiative decay from the surface defects of NPs, and the doped Yb3+ and Nd3+ ions in the NaYF4 shells can transfer more excitation energy to Ho3+ ions in the core. In addition, the NaYF4: 20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NP is excited by dual-wavelengths co-excitation (800 nm + 980 nm). It is found that the red UC emission intensity under the co-excitation of dual-wavelengths is higher than the sum of the excitation intensities of two single wavelengths (800 nm and 980 nm), which is due to the synergistic effect generated under the co-excitation of 980 nm and 800 nm near infrared laser. Therefore, different CS structures constructed by introducing different energy transfer channels can achieve the enhancement of the red UC emission under different excitation conditions, and the dual-wavelength co-excitation provides a new way to improve the penetration depth and the detection sensitivity for further expanding the applications in the field of biomedicine.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn
    • Funds: Project support by the Shaanxi Province International Cooperation and Exchange Program, China (Grant No. 2019KW-027), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JQ-864), the Key R&D program of Shaanxi Province, China (Grant Nos. 2020GY-101, 2020GY-127), the Xi’an Science and Technology Innovation Talent Service Enterprise Project, China (Grant Nos. 2020KJRC0107, 2020KJRC0112), and the Funded by Xi’an University of Posts and Telecommunications Joint Postgraduate Cultivation Workstation, China (Grant No. YJGJ201905)
    [1]

    Sivakumar S, van Veggel F C J M, Raudsepp M 2005 J. Am. Chem. Soc. 127 12464Google Scholar

    [2]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar

    [3]

    Shalav A, Richards B S, Trupke T, Trupke T, Krämer K W, Güdel H U 2005 Appl. Phys. Lett. 86 013505Google Scholar

    [4]

    An M Y, Cui J B, He Q, Wang L Y 2013 J. Mater. Chem. B 1 1333Google Scholar

    [5]

    Li J J, Cheng F F, Huang H P, Li L L, Zhu J J 2015 Chem. Soc. Rev. 44 7855Google Scholar

    [6]

    Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F 2017 J. Phys. Chem. C 121 18909Google Scholar

    [7]

    Chen X, Jin L M, Kong W, Sun T Y, Zhang W F, Zhang X H, Fan J, Yu S F, Wang F 2016 Nat. Commun. 7 10304Google Scholar

    [8]

    Liang Y J, Noh H M, Xue J P, Choi H Y, Park S H, Choi B C, Kim J Y, Jeong J H 2017 Mater. Design. 130 190Google Scholar

    [9]

    Campos-Gonçalvesa I, Costa B F O, Santos R F, Durães L 2017 Mater. Design. 130 263Google Scholar

    [10]

    Szczeszak A, Jurga N, Lis F 2020 Ceram. Int. 46 26382Google Scholar

    [11]

    Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar

    [12]

    Liu Y F, Zhao J, Zhang Y, Zhang H F, Zhang Z L, Gao H P, Mao Y L 2019 J. Alloy. Compd. 810 151761Google Scholar

    [13]

    Huang X Y, Lin J 2015 J. Mater. Chem. C 3 7652Google Scholar

    [14]

    Zhan S P, Xiong J, Nie G Z, Wu S B, Hu J S, Wu X F, Hu S G, Zhang J, Gao Y Y, Liu Y X 2019 Adv. Mater. Interfaces 6 1802089Google Scholar

    [15]

    Li X M, Zhang F, Zhao D Y 2015 Chem. Soc. Rev. 44 1346Google Scholar

    [16]

    Nie Z Y, Ke X X, Li D N, Zhao Y L, Zhu L L, Qiao R, Zhang X L 2019 J. Phys. Chem. C 123 22959Google Scholar

    [17]

    Wang D, Xue B, Kong X G, Tu L P, Liu X M, Zhang Y L, Chang Y L, Luo Y S, Zhao H Y, Zhang H 2015 Nanoscale 7 190Google Scholar

    [18]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano. 7 7200Google Scholar

    [19]

    Shi Z L, Duan Y, Zhu X J, Wang Q W, Li D D, Hu K, Feng W, Li F Y, Xu C X 2018 Nanotechnology 29 094001Google Scholar

    [20]

    Xu B, Zhang X, Huang W J, Yang Y J, Ma Y, Gu Z J, Zhai T Y, Zhao Y L 2016 J. Mater. Chem. B 4 2776Google Scholar

    [21]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earth. 37 573Google Scholar

    [22]

    Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M 2004 J. Appl. Phys. 96 661Google Scholar

    [23]

    Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226Google Scholar

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [25]

    Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [26]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar

    Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin 68 174204Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumin. 179 562Google Scholar

    [28]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

    [29]

    Gao W, Dong J, Yan X W, Liu L, Liu J H, Zhang W W 2017 J. Lumin. 192 513Google Scholar

    [30]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloy. Compd. 818 152934Google Scholar

    [31]

    Chen D Q, Liu L, Huang P, Ding M Y, Zhong J S, Ji Z G 2015 J. Phys. Chem. Lett. 6 2833Google Scholar

    [32]

    Li J C, Zhu X J, Xue M, Feng W, Ma R L, Li F Y 2016 Inorg. Chem. 55 10278Google Scholar

    [33]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [34]

    Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P 2019 Chem. Mater. 31 7898Google Scholar

    [35]

    Zhao J, Liu Y F, Zhou C P, Gao H P, Zhang H F, Mao Y L 2020 J. Lumin. 219 116936Google Scholar

    [36]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [37]

    Wang J M, Lin H, Cheng Y, Cui X S, Gao Y, Ji Z L, Xu J, Wang Y S 2019 Sensor Actuat. B-Chem. 278 165Google Scholar

    [38]

    Chen Z, Zhang X W, Zeng S F, Liu Z J, Ma Z J, Dong G P, Zhou S F, Liu X F, Qiu J R 2015 Applied Physics Express 8 032301Google Scholar

    [39]

    Zhou J J, Deng J Y, Zhu H M, Chen X Y, Teng Y, Jia H, Xu S Q, Qiu J R 2013 J. Mater. Chem. C 1 8023Google Scholar

    [40]

    Yang Y, Li W W, Mei B C, Song J H, Yi G Q, Zhou Z W, Liu J S 2019 J. Lumin. 213 504Google Scholar

    [41]

    Li P, Guo L N, Zhang Z X, Li T S, Chen P L 2018 Dyes and Pigments 154 242Google Scholar

  • 图 1  NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体及相应核壳纳米晶体的XRD图

    Figure 1.  The XRD patterns of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ nanoparticles (NPs) and core-shell (CS) structures.

    图 2  (a) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体、(b) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaYF4核壳纳米晶体、(c) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaYF4:15%Yb3+ 核壳纳米晶体和(d) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaYF4:15% Yb3+/10%Nd3+核壳纳米晶体的TEM图, 插图分别为相应的粒径尺寸分布图

    Figure 2.  The TEM images and size distribution of the (a) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs, (b) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4 CS NPs, (c) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+ CS NPs, and (d) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaYF4:15%Yb3+/10%Nd3+ CS NPs.

    图 3  在近红外光980 nm激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15)核壳纳米晶体的(a)上转换发射光谱、(b)增强因子和(c)红绿比图

    Figure 3.  (a) Upconversion (UC) emission spectra, (b) enhancement factor and (c) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under the excitation of a 980 nm NIR laser.

    图 4  在近红外光800 nm激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x %Nd3+ (x = 5, 10, 15, 20, 30, 40)核壳纳米晶体的(a)上转换发射光谱、(b)增强因子和(c)红绿比图

    Figure 4.  (a) The UC emission spectra, (b) enhancement factor and (c) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x %Nd3+ (x = 5, 10, 15, 20, 30, 40) CS NPs under the excitation of an 800 nm NIR laser.

    图 5  (a) 在980 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+核壳纳米晶体和(c)在800 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的上转换发射光谱, 插图分别为其随激发功率变化的红绿比图; (b)和(d)为对应的发光强度与激发功率间的依赖关系

    Figure 5.  (a) and (c) The UC emission spectra and corresponding R/G ratio, (b) and (d) UC emission intensity versus excitation power of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ CS NPs with 980 nm excitation power increasing from 40 mW to 100 mW (a), (b) and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs with 800 nm excitation power increasing from 70 mW to 130 mW (c), (d).

    图 6  Nd3+, Yb3+, Ho3+ 和 Ce3+离子的能级图和可能的上转换跃迁机理

    Figure 6.  Energy level diagrams of Nd3+, Yb3+, Ho3+ and Ce3+ ions as well as proposed UC mechanisms.

    图 7  在980 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) 核壳纳米晶体的上转换红光发射的寿命衰减曲线

    Figure 7.  Luminescence lifetimes of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under 980 nm excitation at 642 nm.

    图 8  分别在980 nm激发下、800 nm激发下、980 nm和800 nm共同激发下NaYF4:20%Yb3+ /2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的(a)上转换发射光谱和(b)红绿比图

    Figure 8.  (a) The UC emission spectra and (b) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs under 980 nm, 800 nm and simultaneous 980 nm + 800 nm excitation.

    图 9  NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体在(a) 不同980 nm激光功率下, 固定800 nm激光功率为120 mW时和(d) 不同800 nm激光功率下, 固定980 nm激光功率为120 mW时的上转换发射光谱; (b) 和 (e)为其对应的随不同波长激发功率变化的增强因子图; (c) 和 (f) 为其对应的随不同波长激发功率变化的红绿比图

    Figure 9.  (a), (d) The UC emission spectra, (b), (e) enhancement factor and (c), (f) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs on the excitation power of 980 nm with the power of 800 nm laser fixed at 120 mW ((a)–(c)) and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs on the excitation power of 800 nm with the power of 980 nm laser fixed at 120 mW ((d)–(f)).

    表 1  NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+核壳纳米晶体的上转换红光发射的荧光寿命

    Table 1.  Luminescence lifetimes of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under 980 nm excitation at 642 nm.

    SamplesLifetime/μs
    a: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ 208.7 ± 4.7
    b: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4555.4 ± 4.1
    c: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+667.6 ± 5.7
    d: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:10%Yb3+499.8 ± 1.7
    e: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+321.8 ± 1.3
    DownLoad: CSV
  • [1]

    Sivakumar S, van Veggel F C J M, Raudsepp M 2005 J. Am. Chem. Soc. 127 12464Google Scholar

    [2]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar

    [3]

    Shalav A, Richards B S, Trupke T, Trupke T, Krämer K W, Güdel H U 2005 Appl. Phys. Lett. 86 013505Google Scholar

    [4]

    An M Y, Cui J B, He Q, Wang L Y 2013 J. Mater. Chem. B 1 1333Google Scholar

    [5]

    Li J J, Cheng F F, Huang H P, Li L L, Zhu J J 2015 Chem. Soc. Rev. 44 7855Google Scholar

    [6]

    Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F 2017 J. Phys. Chem. C 121 18909Google Scholar

    [7]

    Chen X, Jin L M, Kong W, Sun T Y, Zhang W F, Zhang X H, Fan J, Yu S F, Wang F 2016 Nat. Commun. 7 10304Google Scholar

    [8]

    Liang Y J, Noh H M, Xue J P, Choi H Y, Park S H, Choi B C, Kim J Y, Jeong J H 2017 Mater. Design. 130 190Google Scholar

    [9]

    Campos-Gonçalvesa I, Costa B F O, Santos R F, Durães L 2017 Mater. Design. 130 263Google Scholar

    [10]

    Szczeszak A, Jurga N, Lis F 2020 Ceram. Int. 46 26382Google Scholar

    [11]

    Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar

    [12]

    Liu Y F, Zhao J, Zhang Y, Zhang H F, Zhang Z L, Gao H P, Mao Y L 2019 J. Alloy. Compd. 810 151761Google Scholar

    [13]

    Huang X Y, Lin J 2015 J. Mater. Chem. C 3 7652Google Scholar

    [14]

    Zhan S P, Xiong J, Nie G Z, Wu S B, Hu J S, Wu X F, Hu S G, Zhang J, Gao Y Y, Liu Y X 2019 Adv. Mater. Interfaces 6 1802089Google Scholar

    [15]

    Li X M, Zhang F, Zhao D Y 2015 Chem. Soc. Rev. 44 1346Google Scholar

    [16]

    Nie Z Y, Ke X X, Li D N, Zhao Y L, Zhu L L, Qiao R, Zhang X L 2019 J. Phys. Chem. C 123 22959Google Scholar

    [17]

    Wang D, Xue B, Kong X G, Tu L P, Liu X M, Zhang Y L, Chang Y L, Luo Y S, Zhao H Y, Zhang H 2015 Nanoscale 7 190Google Scholar

    [18]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano. 7 7200Google Scholar

    [19]

    Shi Z L, Duan Y, Zhu X J, Wang Q W, Li D D, Hu K, Feng W, Li F Y, Xu C X 2018 Nanotechnology 29 094001Google Scholar

    [20]

    Xu B, Zhang X, Huang W J, Yang Y J, Ma Y, Gu Z J, Zhai T Y, Zhao Y L 2016 J. Mater. Chem. B 4 2776Google Scholar

    [21]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earth. 37 573Google Scholar

    [22]

    Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M 2004 J. Appl. Phys. 96 661Google Scholar

    [23]

    Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226Google Scholar

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [25]

    Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [26]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar

    Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin 68 174204Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumin. 179 562Google Scholar

    [28]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

    [29]

    Gao W, Dong J, Yan X W, Liu L, Liu J H, Zhang W W 2017 J. Lumin. 192 513Google Scholar

    [30]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloy. Compd. 818 152934Google Scholar

    [31]

    Chen D Q, Liu L, Huang P, Ding M Y, Zhong J S, Ji Z G 2015 J. Phys. Chem. Lett. 6 2833Google Scholar

    [32]

    Li J C, Zhu X J, Xue M, Feng W, Ma R L, Li F Y 2016 Inorg. Chem. 55 10278Google Scholar

    [33]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [34]

    Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P 2019 Chem. Mater. 31 7898Google Scholar

    [35]

    Zhao J, Liu Y F, Zhou C P, Gao H P, Zhang H F, Mao Y L 2020 J. Lumin. 219 116936Google Scholar

    [36]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [37]

    Wang J M, Lin H, Cheng Y, Cui X S, Gao Y, Ji Z L, Xu J, Wang Y S 2019 Sensor Actuat. B-Chem. 278 165Google Scholar

    [38]

    Chen Z, Zhang X W, Zeng S F, Liu Z J, Ma Z J, Dong G P, Zhou S F, Liu X F, Qiu J R 2015 Applied Physics Express 8 032301Google Scholar

    [39]

    Zhou J J, Deng J Y, Zhu H M, Chen X Y, Teng Y, Jia H, Xu S Q, Qiu J R 2013 J. Mater. Chem. C 1 8023Google Scholar

    [40]

    Yang Y, Li W W, Mei B C, Song J H, Yi G Q, Zhou Z W, Liu J S 2019 J. Lumin. 213 504Google Scholar

    [41]

    Li P, Guo L N, Zhang Z X, Li T S, Chen P L 2018 Dyes and Pigments 154 242Google Scholar

  • [1] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun. Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal. Acta Physica Sinica, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [3] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [4] Gao Wei, Shao Lin, Han Shan-Shan, Xing Yu, Zhang Jing-Jing, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Upconversion white-light emission luminescence characteristics based on single-particle NaYF4 microrod. Acta Physica Sinica, 2023, 72(2): 024207. doi: 10.7498/aps.72.20221606
    [5] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [6] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [7] Gao Wei, Zhang Jing-Jing, Han Shan-Shan, Xing Yu, Shao Lin, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Energy transfer characteristics of single-particle NaYF4 core-shell structure. Acta Physica Sinica, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [8] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [9] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [10] Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan. Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method. Acta Physica Sinica, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [11] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [12] Zhang Yu-Wen, Deng Yong-He, Wen Da-Dong, Zhao He-Ping, Gao Ming. Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate. Acta Physica Sinica, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [13] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [14] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [15] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [16] Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong. Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Physica Sinica, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [17] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [18] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [19] Shu Ming-Fei, Shang Yu-Li, Chen Wei, Cao Wan-Qiang. Influence of core-shell structure on dielectric behaviour in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [20] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
  • supplement 154208-20210118补充材料.pdf supplement
Metrics
  • Abstract views:  5189
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2021
  • Accepted Date:  23 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回