Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate

Zhang Yu-Wen Deng Yong-He Wen Da-Dong Zhao He-Ping Gao Ming

Citation:

Diffusion of Al atoms and growth of Al nanoparticle clusters on surface of Ni substrate

Zhang Yu-Wen, Deng Yong-He, Wen Da-Dong, Zhao He-Ping, Gao Ming
PDF
HTML
Get Citation
  • NiAl nanoparticles possess high-energy density and good mechanical properties at elevated temperatures, and are considered as an important material. However, the differences in the diffusion behavior of Al adsorbed atoms on different Ni substrate surfaces and the effects of different diffusion mechanisms on the deposition growth of Al atoms on the Ni substrate surface are highly desired to be clarified. Therefore, in the present work, the diffusion behavior of single Al adsorbed atoms and nanoparticle cluster growth on the Ni substrate surface of decahedral (DEC), cuboctahedral(CUB) and icosahedral(ICO) structures are systematically studied by molecular dynamics (MD) throuh analyzing the embedded atom potentialand using the nudged elastic band method. The diffusion barriers of Al adsorbed atoms on three different Ni substrates are calculated by nudged elastic band methodand analyzed, showing that the diffusion barrier is greatly affected by the smoothness of the step edge and the atomic coordination number of substrate as well. The diffusions of Al adsorption atoms on the surfaces of three Ni substrates are realized by two mechanisms, namely exchanging or hoping, and the lowest Ehrlich-Schwoebel (ES) barrier is 0.38 eV for exchange CUB{111} → {100}, 0.52 eV for exchange DEC{111} → {100}, and 0.52 eV for hoping ICO {111} → {111}. The exchanging mechanismsupports Al adatoms diffusing from {111} to {100} facet on the three Ni substrates, while the diffusion between two adjacent {111} facets is mainly driven by the hoping mechanism. On this basis, atom-by-atom growth MD simulation is used to study the structure of the Ni-Al cluster. The deposited Al atoms first tend to diffuse near the edges of the steps and the vertices. The deposited Al atoms begin to aggregate into islands with the increase of their number. For Al atoms on the Ni cluster, a good Ni-core/Al-shell structure can be obtained by depositing Al atoms on the surface of Ni substrate at lower temperatures. In this core-shell structure, Al atoms have a larger surface energy and atom radius compared with Ni atoms. For the ICO substrate, the corresponding defect number of core-shell clusters is smaller than for the CUB and the DEC substrate, which is in good agreement with the diffusion behavior of Al adsorbed atoms on the Ni substrate cluster surface. The surface of Ni-Al bimetal is gradually alloyed with the increase of growth temperature. This study provides a good insight into the diffusion and growth of Al adsorbed atoms on Ni substrates surface on an atomic scale.
      Corresponding author: Deng Yong-He, dengyonghe1@163.com
    [1]

    Li T T, He C, Zhang W X, Cheng M 2018 J. Alloys Compd. 752 76Google Scholar

    [2]

    Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845Google Scholar

    [3]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971Google Scholar

    [4]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Cryst. Growth Des. 12 2978Google Scholar

    [5]

    Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R 2004 Surf. Sci. 566 192

    [6]

    Song P X, Wen D S 2010 J. Phys. Chem. C 114 8688Google Scholar

    [7]

    Ferrer D, Torres-Castro A, Gao X, Sepúlveda-Guzmán S, Ortiz-Méndez U, José-Yacamán M 2007 Nano Lett. 7 1701Google Scholar

    [8]

    Baletto F, Mottet C, Ferrando R 2003 Eur. Phys. J. D 24 233Google Scholar

    [9]

    Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026Google Scholar

    [10]

    Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355

    [11]

    Rapallo A, Rossi G, Ferrando R, et al. 2005 J. Chem. Phys. 122 194308Google Scholar

    [12]

    Henglein A 2000 J. Phys. Chem. B 104 2201Google Scholar

    [13]

    Dai X Y, Hu W Y, Yang J Y, Yi G J 2017 Thin Solid Films 626 178Google Scholar

    [14]

    Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160Google Scholar

    [15]

    De S, Zhang J G, Luque R, Yan N 2016 Energy Environ Sci. 9 3314Google Scholar

    [16]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504Google Scholar

    [17]

    Yang J Y, Hu W Y, Tang J F 2013 RSC Adv. 4 2155

    [18]

    Shyrokorad D, Kornich G, Buga S 2019 Comput. Mater. Sci. 159 110Google Scholar

    [19]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [20]

    Purja Pun G P, Mishin Y 2009 Philos. Mag. 89 3245Google Scholar

    [21]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [22]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metal. Sin. 53 1659Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Wu B, Zhou J Q, Xue C, Liu H X 2015 Appl. Surf. Sci. 355 1145Google Scholar

    [25]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    Yanting W, Teitel S, Christoph D 2005 J. Chem. Phys. 122 9673

    [28]

    Vitos L, Ruban A V, Skriver H L, Kollar J 1998 Surf. Sci. 411 186Google Scholar

    [29]

    Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys Compd. 764 323Google Scholar

    [30]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [31]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 物理学报 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [32]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665Google Scholar

    [33]

    Mishin Y, Mehl M J, Papaconstantopoulos D A 2002 Phys. Rev. B 65 392

    [34]

    Ashcroft N W, Mermin N D 1976 Solid State Physics. (Saunders, Philadelphia) pp216–217, 228–229

    [35]

    Pearson W B, Villars P, Calvert L D 1985 ASM 3 258

    [36]

    Rzyman K, Moser Z 2004 Prog. Mater. Sci. 49 581Google Scholar

    [37]

    Ayrault G, Ehrlich G 1974 J. Chem. Phys. 60 281Google Scholar

    [38]

    Ehrlich G, Hudda F G 1966 J. Chem. Phys. 44 1039Google Scholar

    [39]

    Yildirim H, Rahman T S 2009 Phys. Rev. B: Condens. Matter 80 235413Google Scholar

    [40]

    Yang L Y, Gan X L, Xu C, et al. 2019 Comput. Mater. Sci. 156 47Google Scholar

  • 图 1  含有923个原子的CUB (a), DEC (b)和ICO (c)结构示意图, 三种结构是以壳层组成的非晶结构, 其中DEC和CUB由{111}和{100}面组成, 而ICO仅由{111}面组成

    Figure 1.  CUB (a), DEC (b) and ICO (c) microstructure with 923 atoms. The three clusters are a non-crystalline structure organized in shells. The DEC and CUB consist of {111} and {100} facets, and the ICO has only {111} facets.

    图 2  对于ICO, DEC和CUB结构, 总原子数和表面原子数所占的比例与壳层数的函数关系

    Figure 2.  For the ICO, DEC and CUB structures, the total atomic number and percent of the surface atoms as a function of the shell number.

    图 3  对于Al 吸附原子在CUB923, DEC923和ICO923结构的Ni基底表面上, 通过跳跃和交换机制, 吸附原子从{111}面向{100}面或向{111}面扩散的路径 (a) Hopping CUB{111} → {100}; (b) Exchange CUB{111} → {100}; (c) Exchange CUB{111} → {111}; (d) Exchange DEC{111} → {100}; (e) Hopping DEC{111} → {100}; (f) Exchange DEC{111} → {111}; (g) Hoping DEC{111} → {111}; (h) Exchange ICO{111} → {111}; (i) Hoping ICO{111} → {111}. 橙色的球表示铝原子, 灰色的球表示镍原子

    Figure 3.  For the Al adatoms on the surfaces of the Ni CUB923, DEC923, and ICO923, the diffusion path of the adatom from the {111} facet to the {100} facet or to the {111} facet via the hopping and exchange mechanisms: (a) Hopping CUB{111} → {100}; (b) Exchange CUB{111} → {100}; (c) Exchange CUB{111} → {111}; (d) Exchange DEC{111} → {100}; (e) Hopping DEC{111} → {100}; (f) Exchange DEC{111} → {111}; (g) Hoping DEC{111} → {111}; (h) Exchange ICO{111} → {111}; (i) Hoping ICO{111} → {111}. The orange balls show the Al adatoms and the gray balls show the Ni atoms.

    图 4  Al吸附原子在Ni CUB923基底表面扩散对应的能量势垒曲线 (a) {111} → {100}; (b) {111} → {111}. 扩散路径如图3(a)图3(c)所示

    Figure 4.  For the Al adatom on the surface of the Ni CUB923, the system energies as a function of reaction coordinate corresponding to the diffusion path shown in Fig.3(a)-Fig.3(c): (a) {111} → {100}; (b) {111} → {111}.

    图 5  Al吸附原子在Ni DEC923基底表面扩散对应的能量势垒曲线 (a) {111} → {100}; (b) {111} → {111}. 扩散路径如图3(d)图3(g)所示

    Figure 5.  For the Al adatom on the surface of the NiDEC923, the system energies as a function of reaction coordinate corresponding to the diffusion path shown in Fig.3(d)-Fig.3(g): (a) {111} → {100}; (b) {111} → {111}.

    图 6  Al吸附原子在Ni ICO923基底表面扩散对应的能量势垒曲线, 扩散路径如图3(h)图3(i)所示

    Figure 6.  For the Al adatom on the surface of the Ni ICO923, the system energies as a function of reaction coordinate corresponding to the diffusion path shown in Fig. 3(h) and Fig.3(i).

    图 7  T = 300 K, 在不同的Ni基底表面生长, $ N_{\rm Ni}^{\rm surf} $$ N_{\rm Al}^{\rm bulk} $与沉积的Al原子数的函数关系

    Figure 7.  On the different substrates of Ni core, the $ N_{\rm Ni}^{\rm surf} $ and $ N_{\rm Al}^{\rm bulk} $ as functions of the deposited Al atoms at T = 300 K.

    图 8  T = 300 k, Al原子在Ni ICO923基底上的生长序列 (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300; (d) Ndep = 400; (e) Ndep = 500. 橙色和灰色的球分别表示Al原子和Ni原子

    Figure 8.  Growth sequence of Al atoms growth on the ICO923 of Fe at T = 300 k: (a) Ndep = 100; (b) Ndep = 200; (c) Ndep = 300; (d) Ndep = 400; (e) Ndep = 500. The orange and gray balls show the Al atoms and the Ni atoms, respectively.

    图 9  T = 300, 500, 700和900 K, Al原子在Ni ICO923基底表面生长, $ N_{\rm Ni}^{\rm surf} $$ N_{\rm Al}^{\rm bulk} $作为沉积的Al原子数的函数

    Figure 9.  At T = 300, 500, 700 and 900 K, for the growth of Al atoms on the ICO923 of Ni, the $ N_{\rm Ni}^{\rm surf} $ and $ N_{\rm Al}^{\rm bulk} $ as functions of the deposited Al atoms.

    图 10  异质配位数(NAl-Ni)随温度的变化, 插图对应于每个生长温度下最终构型. 橙色的球表示Al原子, 灰色的球表示Ni原子

    Figure 10.  The variation of hetero-coordination number (NAl-Ni) with temperature, and the inset correspond to the final configuration at each growth temperature. The orange and gray balls show the Al atoms and the Ni atoms, respectively.

    表 1  金属Ni和金属Al的表面能(Esurf). 列出了对应的第一性原理(FP)[28]数据

    Table 1.  The surface energy (Esurf) for the two different material of Ni and Al. For comparison, the first principle (FP) calculations[28] are listed.

    元素晶体结构Esurf/mJ·m–2
    晶面本工作FP[25]
    NiFCC(111)18752011
    (100)19642426
    (110)21482368
    AlFCC(111)933939
    (100)9941081
    (110)10631090
    DownLoad: CSV

    表 2  NiAl不同化合物的形成热(∆H). 为了对比列出了对应的第一性原理[32](FP)和其他理论方法[33] (EMP)以及对应实验结果[34-36] (EXP)

    Table 2.  The calculated heat of formation (∆H), structural of NiAl in varying crystal structures. For comparison, the first-principle (FP)[32] and other calculations with empirical methods (EMP)[33] and available experimental values (EXP)[34-36] are also listed.

    化合物结构H/eV·atom–1
    本工作FPEMPEXP
    NiAlB2–0.61–0.67–0.67
    NiAl3L12–0.26
    Ni3AlL12–0.45–0.44–0.46, -0.48–0.49, -0.43
    DownLoad: CSV
  • [1]

    Li T T, He C, Zhang W X, Cheng M 2018 J. Alloys Compd. 752 76Google Scholar

    [2]

    Riccardo F, Julius J, Johnston R L 2008 Chem. Rev. 108 845Google Scholar

    [3]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Surf. Sci. 606 971Google Scholar

    [4]

    Yang J Y, Hu W Y, Wu Y R, Dai X Y 2012 Cryst. Growth Des. 12 2978Google Scholar

    [5]

    Baletto F, Mottet C, Rapallo A, Rossi G, Ferrando R 2004 Surf. Sci. 566 192

    [6]

    Song P X, Wen D S 2010 J. Phys. Chem. C 114 8688Google Scholar

    [7]

    Ferrer D, Torres-Castro A, Gao X, Sepúlveda-Guzmán S, Ortiz-Méndez U, José-Yacamán M 2007 Nano Lett. 7 1701Google Scholar

    [8]

    Baletto F, Mottet C, Ferrando R 2003 Eur. Phys. J. D 24 233Google Scholar

    [9]

    Deng L, Hu W Y, Deng H Q, Xiao S F 2010 J. Phys. Chem. C 114 11026Google Scholar

    [10]

    Deng L, Hu W Y, Deng H Q, Xiao S F, Tang J F 2011 J. Phys. Chem. C 115 11355

    [11]

    Rapallo A, Rossi G, Ferrando R, et al. 2005 J. Chem. Phys. 122 194308Google Scholar

    [12]

    Henglein A 2000 J. Phys. Chem. B 104 2201Google Scholar

    [13]

    Dai X Y, Hu W Y, Yang J Y, Yi G J 2017 Thin Solid Films 626 178Google Scholar

    [14]

    Yang J Y, Hu W Y, Tang J F, Dai X Y 2013 Comput. Mater. Sci. 74 160Google Scholar

    [15]

    De S, Zhang J G, Luque R, Yan N 2016 Energy Environ Sci. 9 3314Google Scholar

    [16]

    Baletto F, Mottet C, Ferrando R 2003 Phys. Rev. Lett. 90 135504Google Scholar

    [17]

    Yang J Y, Hu W Y, Tang J F 2013 RSC Adv. 4 2155

    [18]

    Shyrokorad D, Kornich G, Buga S 2019 Comput. Mater. Sci. 159 110Google Scholar

    [19]

    Mottet C, Rossi G, Baletto F, Ferrando R 2005 Phys. Rev. Lett. 95 035501Google Scholar

    [20]

    Purja Pun G P, Mishin Y 2009 Philos. Mag. 89 3245Google Scholar

    [21]

    邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 物理学报 65 066401Google Scholar

    Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401Google Scholar

    [22]

    彭超, 李媛, 邓永和, 彭平 2017 金属学报 53 1659Google Scholar

    Peng C, Li Y, Deng Y H, Peng P 2017 Acta Metal. Sin. 53 1659Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Wu B, Zhou J Q, Xue C, Liu H X 2015 Appl. Surf. Sci. 355 1145Google Scholar

    [25]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [26]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [27]

    Yanting W, Teitel S, Christoph D 2005 J. Chem. Phys. 122 9673

    [28]

    Vitos L, Ruban A V, Skriver H L, Kollar J 1998 Surf. Sci. 411 186Google Scholar

    [29]

    Abbaspour M, Akbarzadeh H, Lotfi S 2018 J. Alloys Compd. 764 323Google Scholar

    [30]

    Wang H, Hu T, Qin J Y, Zhang T 2012 J. Appl. Phys. 112 073520Google Scholar

    [31]

    高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平 2020 物理学报 69 046401Google Scholar

    Gao M, Deng Y H, Wen D D, Tian Z A, Zhao H P, Peng P 2020 Acta Phys. Sin. 69 046401Google Scholar

    [32]

    Wang Y, Liu Z K, Chen L Q 2004 Acta Mater. 52 2665Google Scholar

    [33]

    Mishin Y, Mehl M J, Papaconstantopoulos D A 2002 Phys. Rev. B 65 392

    [34]

    Ashcroft N W, Mermin N D 1976 Solid State Physics. (Saunders, Philadelphia) pp216–217, 228–229

    [35]

    Pearson W B, Villars P, Calvert L D 1985 ASM 3 258

    [36]

    Rzyman K, Moser Z 2004 Prog. Mater. Sci. 49 581Google Scholar

    [37]

    Ayrault G, Ehrlich G 1974 J. Chem. Phys. 60 281Google Scholar

    [38]

    Ehrlich G, Hudda F G 1966 J. Chem. Phys. 44 1039Google Scholar

    [39]

    Yildirim H, Rahman T S 2009 Phys. Rev. B: Condens. Matter 80 235413Google Scholar

    [40]

    Yang L Y, Gan X L, Xu C, et al. 2019 Comput. Mater. Sci. 156 47Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] Deng Yong-He, Zhang Yu-Wen, Tan Heng-Bo, Wen Da-Dong, Gao Ming, Wu An-Ru. Surface segregation, structural features, and diffusion of NiCu bimetallic nanoparticles. Acta Physica Sinica, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [4] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] Hong Wen-Peng, Lan Jing-Rui, Li Hao-Ran, Li Bo-Yu, Niu Xiao-Juan, Li Yan. Reversal behavior of optical absorption rate of bimetallic core-shell nanoparticles based on finite-difference time-domain method. Acta Physica Sinica, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [6] Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei. Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures. Acta Physica Sinica, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [7] Wang Yi, Ding Zhao, Yang Chen, Luo Zi-Jiang, Wang Ji-Hong, Li Jun-Li, Guo Xiang. Formation mechanism of InAs nanostructures on GaAs (001) surface at low temperature. Acta Physica Sinica, 2021, 70(19): 193601. doi: 10.7498/aps.70.20210645
    [8] Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin. Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application. Acta Physica Sinica, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [9] Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin. Tuning optical force of dielectric/metal core-shell placed above Au film. Acta Physica Sinica, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [10] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [12] Qian Ze-Yu, Zhang Lin. Atomical simulations of structural changes of a melted TiAl alloy particle on TiAl (001) substrate. Acta Physica Sinica, 2015, 64(24): 243103. doi: 10.7498/aps.64.243103
    [13] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Molecular dynamics investigation of thermal stability of Pt-Au core-shell nanoparticle. Acta Physica Sinica, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [14] Zou Xiao-Cui, Wu Mu-Sheng, Liu Gang, Ouyang Chu-Ying, Xu Bo. First-principles study on the electronic structures of β-SiC/carbon nanotube core-shell structures. Acta Physica Sinica, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [15] Shu Ming-Fei, Shang Yu-Li, Chen Wei, Cao Wan-Qiang. Influence of core-shell structure on dielectric behaviour in relaxor ferroelectrics. Acta Physica Sinica, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [16] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [17] Liu Mei-Lin, Zhang Zong-Ning, Li Wei, Zhao Qian, Qi Yang, Zhang Lin. Deposition process of MgO thin film on MgO(001) surface simulated by molecular dynamics. Acta Physica Sinica, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [18] Meng Li-Juan, Li Rong-Wu, Liu Shao-Jun, Sun Jun-Dong. Molecular dynamics simulation of heterogeneous adatom diffusion on Cu(001) surface. Acta Physica Sinica, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [19] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Molecular dynamics simulation of Gd adatom diffusion on Cu(110) surface. Acta Physica Sinica, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [20] SUN DA-LIANG, YU XI-LING, WANG YAN, GU QING-TIAN. TGS CRYSTAL GROWTH POLYMORPHISM AND SURFACE DIFFUSION GROWTH MECHANISM. Acta Physica Sinica, 2000, 49(9): 1873-1877. doi: 10.7498/aps.49.1873
Metrics
  • Abstract views:  11357
  • PDF Downloads:  134
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2020
  • Accepted Date:  17 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回