搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温下InAs纳米结构在GaAs(001)表面形成机制的研究

王一 丁召 杨晨 罗子江 王继红 李军丽 郭祥

引用本文:
Citation:

低温下InAs纳米结构在GaAs(001)表面形成机制的研究

王一, 丁召, 杨晨, 罗子江, 王继红, 李军丽, 郭祥

Formation mechanism of InAs nanostructures on GaAs (001) surface at low temperature

Wang Yi, Ding Zhao, Yang Chen, Luo Zi-Jiang, Wang Ji-Hong, Li Jun-Li, Guo Xiang
PDF
HTML
导出引用
  • 改变生长工艺、控制并调整液滴中原子扩散机制是对复杂纳米结构制备的关键途径, 并且对基于液滴外延方法研究半导体纳米结构十分重要. 本文在不同衬底温度, 不同As压下在GaAs(001)上沉积相同沉积量(5 monolayer)的In液滴并观察其表面形貌的变化. 原子力显微镜图像显示, 液滴晶化后所形成的扩散“盘”且呈现一定的对称性. 随着衬底温度的增高, 圆盘半径逐渐扩大, 扩散圆盘中心出现了坑. 而随着As压的增高, 所形成的液滴密度增加, 以液滴为中心所形成的扩散圆盘宽度逐渐减小. 基于经典的成核扩散理论对实验数据拟合得到: GaAs(001))表面In原子在$ [1\bar10] $和[110]晶向上的扩散激活能分别为(0.62 ± 0.01) eV和(1.37 ± 0.01) eV, 且扩散系数D0为1.2 × 10–2 cm2/s. 对比其他研究小组的结果证实了理论的正确性. 实验中得到的In原子的扩散激活能以及In液滴在GaAs(001)上扩散机理, 可以为InAs纳米结构特性的调制提供实验指导.
    In recent years, low-dimensional nanostructures such as quantum dots (QD) and quantum rings (QR) have been widely used in many fields such as optoelectronics, microelectronics and quantum communication due to their unique electrical, optical and magnetic properties. Owing to the similarity between nanostructures and atomic systems, the flexible modulation of several quantum properties of nanomaterials and the preparation of new optoelectronic devices around the characteristics of these structural systems have become a hot topic of research. Changing the growth process to control and tune the atomic diffusion mechanism in droplets is a key way of preparing complex nanostructures, which is important for the study of semiconductor nanostructure by droplet epitaxy. In the present experiment, the same amount (5 monolayer (5 ML)) of indium is deposited on GaAs (001) at different substrate temperatures (140, 160, 170 and 180 ℃) and different arsenic pressures (1.6, 3.3 and 4.6 ML/s), and the surface morphology evolutions are observed. As the substrate temperature increases, the radius of the disk gradually expands and a pit appears in the center of the diffusion disk. As the arsenic pressure increases, the density of the formed droplets increases, and the width of the diffusion disk formed in the center of the droplets gradually decreases. Our work involving nucleation theory is done at T < 200 ℃ to deactivate many thermal processes. This is a result of the diffusion coefficient being more complexly related to temperature. Based on the classical nucleation diffusion theory, the results of experimental data fitting include that the diffusion activation energies of In atoms on the surface of GaAs (001) are (0.62 ± 0.01) eV in $ [1\bar 10] $and (1.37 ± 0.01) eV in [110] respectively, and that the diffusion coefficient D0 is 1.2 × 10–2 cm2/s:those results confirm the theory after having been compared with the results obtained by other research groups. The diffusion activation energy of indium atoms and the diffusion mechanism of indium droplets on GaAs (001) obtained from the experiment can provide experimental guidance for modulating the structural property of InAs nanostructures.
      通信作者: 郭祥, xguo@gzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62065003)、贵州省自然科学基金(批准号: QKH-[2017]1055)和半导体功率器件可靠性教育部工程研究中心开放项目(批准号: ERCMEKFJJ2019-(08))资助的课题
      Corresponding author: Guo Xiang, xguo@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62065003), the Guizhou Provincial Natural Science Foundation of China (Grant No. QKH-[2017]1055), and the Open Project of Reliability Research Center for Semiconductor Power Devices, Ministry of Education, China (Grant No. ERCMEKFJJ2019-(08))
    [1]

    Massimo G, Zhiming W, Armando R, Takashi K, Stefano S 2019 Nat. Mater. 5 799

    [2]

    Francesco B B, Sergio B, Marcus R, Luca E, Alexey F, Daniel H, Armando R, Emiliano B, Rinaldo T, Stefano S 2018 Nano Lett. 18 505Google Scholar

    [3]

    Zocher M, Heyn C, Hansen W 2019 J. Cryst. Growth 512 219Google Scholar

    [4]

    Sergey V B, Maxim S S, Mikhail M E, Boris G K, Oleg A A 2019 Nanotechnology 30 505601Google Scholar

    [5]

    Ying Y, Hancheng Z, Jiawei Y, Lin L, Jin L, Siyuan Y 2019 Nanotechnology 30 485001Google Scholar

    [6]

    Jong S K, Im S H, Sang J L, Jin D S 2018 J. Korean Phys. Soc. 73 190Google Scholar

    [7]

    Li A Z, Wang Z M, Wu J, Salamo G J 2010 Nano Res. 3 490Google Scholar

    [8]

    Pankaow N, Thainoi S, Panyakeow S, Ratanathammaphan S 2011 J. Cryst. Growth. 323 282Google Scholar

    [9]

    Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S, Ratanathammaphan S 2011 J. Cryst. Growth 323 271Google Scholar

    [10]

    Boonpeng P, Kiravittaya S, Thainoi S, Panyakeow S, Ratanathammaphan S 2013 J. Cryst. Growth 378 435Google Scholar

    [11]

    Pankaow N, Prongjit P, Thainoi S, Panyakeow S, Ratanathammaphan S 2013 Microelectron. Eng. 110 298Google Scholar

    [12]

    Biccari F, Bietti S, Cavigli L, Vinattieri A, Nötzel R, Gurioli M 2016 J. Appl. Phys. 120 134312Google Scholar

    [13]

    Nataliya L S, Maxim A V, Alla G N, Igor G N 2018 Comput. Mater. Sci. 141 91Google Scholar

    [14]

    David F, Kamal A, Benito A, Yolanda G, Luisa G 2016 J. Cryst. Growth 434 81Google Scholar

    [15]

    Noda T, Jo M, Mano T, Kawazu T, Sakaki H 2013 J. Cryst. Growth 378 529Google Scholar

    [16]

    Jong S K 2017 Mater. Sci. Semicond. Process. 57 70Google Scholar

    [17]

    Spirina A A, Shwartz N L 2019 Mater. Sci. Semicond. Process. 100 319Google Scholar

    [18]

    Chawner J M A, Chang Y, Hodgson P D, Hayne M, Robson A J, Sanchez A M, Zhuang Q 2019 Semicond. Sci. Technol. 34 9

    [19]

    Zhao C J 2018 J. Nanosci. Nanotechnol. 18 7617Google Scholar

    [20]

    Bietti S, Somaschini C, Esposito L, Fedorov A, Sanguinetti S 2014 J. Appl. Phys. 116 114311Google Scholar

    [21]

    Somaschini C, Bietti S, Koguchi N, Sanguinetti S 2010 Appl. Phys. Lett. 97 203109Google Scholar

    [22]

    Takeshi N, Takaaki M, Hiroyuki S 2011 Cryst. Growth. Des. 11 726Google Scholar

    [23]

    Rosini M, Righi M C, Kratzer P, Magri R 2009 Phys. Rev. B 79 075302Google Scholar

    [24]

    Margaret A S, Stephanie T, Sergey M, Thomas EV, Michael KY 2017 J. Appl. Phys. 121 195302Google Scholar

  • 图 1  不同衬底温度(140, 160, 170 和180 ℃)下InAs纳米结构AFM扫描图

    Fig. 1.  AFM images of InAs nanostructures at different substrate temperatures (140, 160, 170 and 180 °C).

    图 2  180 ℃下[110] (a)和$ [1\bar 10] $ (b)方向上InAs纳米结构AFM剖面线图

    Fig. 2.  AFM profiles of InAs nanostructure at 180 ℃ along the [011] (a) and $ [1\bar 10] $ (b) directions with labels indicating the regions that constitute the InAs diffusion halo.

    图 3  扩散长度($ \Delta $R)随液滴沉积温度演变函数关系图

    Fig. 3.  Evolution of diffusion length (∆R) as a function of droplet deposition temperature.

    图 4  不同衬底温度((a), (d) 160 ℃; (b), (e) 170 ℃; (c), (f) 180 ℃)InAs纳米结构3D形貌及其扩散盘$ (\Delta R) $剖面线图

    Fig. 4.  3D morphology of InAs nanostructures and the profile line of their diffusion disk $ \Delta R $ at different substrate temperatures ((a), (d) 160 °C; (b), (e) 170 °C; (c), (f) 180 °C).

    图 5  (a)—(c) 不同As压力下InAs纳米结构5 µm × 5 µm AFM扫描图; (d) 高砷压(黑色实线)与低砷压(红色虚线)下InAs纳米结构AFM剖面线图

    Fig. 5.  (a)–(c) InAs nanostructure 5 µm × 5 µm AFM scan under different As pressure; (d) AFM profiles of InAs nanostructures at high arsenic pressure (black solid line) and low arsenic pressure (red dashed line).

    图 6  $ \overline {\Delta R} $随As压变化函数图

    Fig. 6.  Plot of $ \overline {\Delta R} $ as a function of As pressure.

    表 1  本文得到的EIn值与文献的比较

    Table 1.  Comparison of the EIn values obtained in this paper with the literatures.

    ReferencesMaterial systemEIn/eVMethod
    Takeshi等[24]InAs/GaAs[110]: 0.34
    $ [1\bar 10] $: 0.21
    Droplet epitaxy
    Margaret等[23]InAs/InGaAs/InP[110]: 0.686 ± 0.04
    $ [1\bar 10] $: 0.546 ± 0.03
    Droplet epitaxy
    Rosini等[22]InAs/InGaAs/GaAs[110]: 0.8–1.0
    $ [1\bar 10] $: 0.4–0.9
    Simulation: KMC and DFT
    Our workInAs/GaAs[110]: 1.37 ± 0.01
    $ [1\bar 10] $: 0.62 ± 0.01
    Droplet epitaxy
    下载: 导出CSV
  • [1]

    Massimo G, Zhiming W, Armando R, Takashi K, Stefano S 2019 Nat. Mater. 5 799

    [2]

    Francesco B B, Sergio B, Marcus R, Luca E, Alexey F, Daniel H, Armando R, Emiliano B, Rinaldo T, Stefano S 2018 Nano Lett. 18 505Google Scholar

    [3]

    Zocher M, Heyn C, Hansen W 2019 J. Cryst. Growth 512 219Google Scholar

    [4]

    Sergey V B, Maxim S S, Mikhail M E, Boris G K, Oleg A A 2019 Nanotechnology 30 505601Google Scholar

    [5]

    Ying Y, Hancheng Z, Jiawei Y, Lin L, Jin L, Siyuan Y 2019 Nanotechnology 30 485001Google Scholar

    [6]

    Jong S K, Im S H, Sang J L, Jin D S 2018 J. Korean Phys. Soc. 73 190Google Scholar

    [7]

    Li A Z, Wang Z M, Wu J, Salamo G J 2010 Nano Res. 3 490Google Scholar

    [8]

    Pankaow N, Thainoi S, Panyakeow S, Ratanathammaphan S 2011 J. Cryst. Growth. 323 282Google Scholar

    [9]

    Boonpeng P, Jevasuwan W, Nuntawong N, Thainoi S, Panyakeow S, Ratanathammaphan S 2011 J. Cryst. Growth 323 271Google Scholar

    [10]

    Boonpeng P, Kiravittaya S, Thainoi S, Panyakeow S, Ratanathammaphan S 2013 J. Cryst. Growth 378 435Google Scholar

    [11]

    Pankaow N, Prongjit P, Thainoi S, Panyakeow S, Ratanathammaphan S 2013 Microelectron. Eng. 110 298Google Scholar

    [12]

    Biccari F, Bietti S, Cavigli L, Vinattieri A, Nötzel R, Gurioli M 2016 J. Appl. Phys. 120 134312Google Scholar

    [13]

    Nataliya L S, Maxim A V, Alla G N, Igor G N 2018 Comput. Mater. Sci. 141 91Google Scholar

    [14]

    David F, Kamal A, Benito A, Yolanda G, Luisa G 2016 J. Cryst. Growth 434 81Google Scholar

    [15]

    Noda T, Jo M, Mano T, Kawazu T, Sakaki H 2013 J. Cryst. Growth 378 529Google Scholar

    [16]

    Jong S K 2017 Mater. Sci. Semicond. Process. 57 70Google Scholar

    [17]

    Spirina A A, Shwartz N L 2019 Mater. Sci. Semicond. Process. 100 319Google Scholar

    [18]

    Chawner J M A, Chang Y, Hodgson P D, Hayne M, Robson A J, Sanchez A M, Zhuang Q 2019 Semicond. Sci. Technol. 34 9

    [19]

    Zhao C J 2018 J. Nanosci. Nanotechnol. 18 7617Google Scholar

    [20]

    Bietti S, Somaschini C, Esposito L, Fedorov A, Sanguinetti S 2014 J. Appl. Phys. 116 114311Google Scholar

    [21]

    Somaschini C, Bietti S, Koguchi N, Sanguinetti S 2010 Appl. Phys. Lett. 97 203109Google Scholar

    [22]

    Takeshi N, Takaaki M, Hiroyuki S 2011 Cryst. Growth. Des. 11 726Google Scholar

    [23]

    Rosini M, Righi M C, Kratzer P, Magri R 2009 Phys. Rev. B 79 075302Google Scholar

    [24]

    Margaret A S, Stephanie T, Sergey M, Thomas EV, Michael KY 2017 J. Appl. Phys. 121 195302Google Scholar

  • [1] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [2] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [3] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [4] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [5] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系. 物理学报, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [6] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [7] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [8] 张宇文, 邓永和, 文大东, 赵鹤平, 高明. Al原子在Ni基衬底表面的扩散及团簇的形成. 物理学报, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [9] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究. 物理学报, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [10] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [11] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [12] 刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒. 纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究. 物理学报, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [13] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象. 物理学报, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [14] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [15] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道. 物理学报, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [16] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [17] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [18] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [19] 孙大亮, 于锡玲, 王 燕, 顾庆天. TGS晶体生长多形性和其表面扩散生长机制. 物理学报, 2000, 49(9): 1873-1877. doi: 10.7498/aps.49.1873
    [20] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究. 物理学报, 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
计量
  • 文章访问数:  4174
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 修回日期:  2021-05-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回