搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导量子处理器芯片工艺线中金属污染问题的研究

徐晓 张海斌 宿非凡 严凯 荣皓 邓辉 杨新迎 马效腾 董学 王绮名 刘佳林 李满满

引用本文:
Citation:

超导量子处理器芯片工艺线中金属污染问题的研究

徐晓, 张海斌, 宿非凡, 严凯, 荣皓, 邓辉, 杨新迎, 马效腾, 董学, 王绮名, 刘佳林, 李满满
cstr: 32037.14.aps.75.20251101

Metal contamination in process line of superconducting quantum processor chips

XU Xiao, ZHANG Haibin, SU Feifan, YAN Kai, RONG Hao, DENG Hui, YANG Xinying, MA Xiaoteng, DONG Xue, WANG Qiming, LIU Jialin, LI Manman
cstr: 32037.14.aps.75.20251101
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 超导量子处理器芯片的制造工艺面临特殊的金属污染挑战, 其材料体系和工艺特性与传统半导体芯片存在显著差异. 本研究系统分析了量子芯片中金属污染的来源、扩散机制及防控策略, 重点探讨了超导材料(如Ta, Nb, Al, TiN等)在蓝宝石和硅衬底上的体扩散与表面扩散行为. 研究发现, 蓝宝石衬底因其致密晶格结构表现出优异的抗扩散性能, 而硅衬底需重点关注Au, In, Sn等易迁移金属的污染风险. 通过实验验证, Ti/Au结构的凸点下金属化层在硅衬底上易发生Au穿透扩散, 且增加Ti层厚度无法显著改善阻挡效果. 量子芯片的低温工艺(<250 ℃)和超低温工作环境(mK级)有效抑制了金属扩散, 但暴露的金属表面和材料多样性仍带来独特挑战. 研究建议建立量子芯片专属的金属污染防控体系, 并提出了后续在新型材料评估、表面态调控及长期可靠性研究等方向的发展路径. 本文为超导量子芯片的工艺优化和性能提升提供了重要理论支撑和技术指导.
    The manufacturing process of superconducting quantum processor chips faces special challenges of metal contamination, and their material system and process characteristics are significantly different from those of traditional semiconductor chips. This study focuses on the issue of metal contamination in the fabrication process of quantum chips, systematically analyzing the sources, diffusion mechanisms, and prevention strategies of metal contamination in quantum chips, where the bulk diffusion and surface migration behaviors of superconducting materials (such as Ta, Nb, Al, TiN) on sapphire and silicon substrates are particularly emphasized, aiming to provide theoretical basis and technical references for process optimization and to promote the industrialization process of quantum computing technology.The metal contamination in the fabrication of quantum chips is mainly caused by the metal film materials used in the process, the external environment, or the unintended metal impurity atoms introduced in the manufacturing process. Among them, some quantum chip components directly use superconducting metal materials. Unlike semiconductor chips, they cannot achieve front and back stage isolation, resulting in the continuous presence of metal surface migration channels, and the exposed metal structures on the chip surface. Metal contamination often leads to two basic failure problems: short circuits and leakage currents. These problems mainly result from the bulk diffusion of metal impurities in the dielectric layer and the migration behavior on the sample surface. The diffusion and migration rates of metals are affected by temperature, interface reactions, defects, and grain boundaries. The results show that the sapphire substrate, due to its dense lattice structure, exhibits excellent anti-diffusion performance, reducing the risk of contamination and providing a stable interface environment for superconducting quantum chips. For silicon substrates, special attention must be paid to the contamination risks from high-mobility metals such as Au, In, and Sn. Experimental verification shows that Ti/Au under bump metallization structures on silicon substrates are prone to Au penetration diffusion, and increasing Ti thickness does not significantly improve the blocking effect. The low-temperature process (< 250 ℃) and ultra-low-temperature operating environment (mK level) of quantum chips effectively suppress metal diffusion, but the exposed metal surfaces and material diversity still pose unique challenges.The study recommends establishing a dedicated metal contamination prevention system for quantum chips and proposes future research directions, including the evaluations of novel materials, surface state regulation, and long-term reliability studies. This work provides important theoretical support and technical guidance for optimizing the process and enhancing the performance of superconducting quantum chips.
      通信作者: 张海斌, hbzh@ustc.edu.cn ; 宿非凡, sufeifan@ustc.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2022LLZ008)、济南科技局和济南高新区管理委员会资助的课题.
      Corresponding author: ZHANG Haibin, hbzh@ustc.edu.cn ; SU Feifan, sufeifan@ustc.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022LLZ008), the Jinan Science & Technology Bureau, and the Jinan Innovation Zone, China.
    [1]

    Acharya R, Abanin D A, Aghababaie-Beni L, Aleiner I, Andersen T I, Ansmann M, Arute F, Arya K, Asfaw A, Astrakhantsev N, et al. 2025 Nature 638 920Google Scholar

    [2]

    Gao D X, Fan D J, Zha C, Bei J H, Cai G Q, Cai J B, Cao S R, Chen F S, Chen J, Chen K, et al. 2025 Phys. Rev. Lett. 134 090601Google Scholar

    [3]

    Van Damme J, Massar S, Acharya R, Ivanov T, Perez Lozano D, Canvel Y, Demarets M, Vangoidsenhoven D, Hermans Y, Lai J G, Vadiraj A M, Mongillo M, Wan D, De Boeck J, Potočnik A, De Greve K 2024 Nature 634 74Google Scholar

    [4]

    Dieter K S 2005 Semiconductor Material and Device Characterization (Hoboken: Wiley IEEE Press) p127

    [5]

    Weber E R 1983 Appl. Phys. A 30 1Google Scholar

    [6]

    夸克M, 瑟达 J 著 (韩郑生 译) 2015 半导体制造技术(北京: 电子工业出版社)

    Quirk M, Serda J (translated by Han Z S) 2015 Semiconductor Manufacturing Technology (Beijing: Publishing House of Electronics Industry

    [7]

    Xiao H 2012 Introduction to Semiconductor Manufacturing Technology (Bellingham: SPIE Press

    [8]

    Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Heidelberg: Springer Verlag

    [9]

    Seshan K 2012 Handbook of Thin Film Deposition: Techniques, Processes, and Technologies (Amsterdam: Elsevier

    [10]

    Gas P, d'Heurle F M 1993 Appl. Surf. Sci. 73 153Google Scholar

    [11]

    Nicolet M A 1978 Thin Solid Films 52 415Google Scholar

    [12]

    Gösele U, Frank W, Seeger A 1980 Appl. Phys. 23 361Google Scholar

    [13]

    Nakashima K, Iwami M, Hiraki A 1975 Thin Solid Films 25 423Google Scholar

    [14]

    Murarka S P 2005 Diffusion Processes in Advanced Technological Materials (Amsterdam: Elsevier) pp239–281

    [15]

    Saiz E, Cannon R M, Tomsia A P 1999 Acta Mater. 47 4209Google Scholar

    [16]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J 2012 Phys. Rev. Lett. 108 096102Google Scholar

    [17]

    Prabriputaloong K, Piggott M R 1973 J. Am. Ceram. Soc. 56 177Google Scholar

    [18]

    Seebauer E G, Allen C E 1995 Prog. Surf. Sci. 49 265Google Scholar

    [19]

    Kirby K W 2008 M. S. Thesis (State College: The Pennsylvania State University

    [20]

    Wu N J, Yasunaga H, Natori A 1992 Appl. Surf. Sci. 260 75Google Scholar

    [21]

    李智瑞 2012 硕士学位论文 (北京: 北京化工大学)

    Li Z R 2012 M. S. Thesis (Beijing: Beijing University of Chemical Technology

    [22]

    陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2010 物理学报 59 3438Google Scholar

    Lu Y D, He X Q, En Y F, Wang X, Zhuang Z Q 2010 Acta Phys. Sin. 59 3438Google Scholar

  • 图 1  半导体芯片TaN/TiN等金属扩散阻挡层和硅化物NiSi接触层示意图[7]

    Fig. 1.  Schematic diagram of TaN/TiN diffusion barrier layers and NiSi contact layer in semiconductor chips[7].

    图 2  用于量子芯片的CPW传输线及其地线互连的铝质跨接桥结构

    Fig. 2.  Aluminum crossover bridge structure for CPW transmission line and ground interconnects in quantum chips.

    图 3  梳状电极UBM结构的线间电阻测试示意图

    Fig. 3.  Schematic of interline resistance test structure for comb-shaped UBM electrodes.

    图 4  高温处理(245 ℃/5 min)前后UBM线间电阻变化对比

    Fig. 4.  Comparison of UBM interline resistance before and after thermal treatment (245 ℃/5 min).

    表 1  半导体芯片与超导量子芯片的工艺比较

    Table 1.  Comparison of process characteristics between conventional semiconductor chips and superconducting quantum chips.

    半导体芯片 超导量子芯片
    器件 CMOS场效应晶体管等 约瑟夫森结的Transmon结构等
    材料 衬底 Si, InP, SiC等 蓝宝石、高阻Si等
    前道工艺 半导体掺杂等 超导金属、少量介质材料等
    工艺 离子注入、热工艺等 有机清洗工艺、剥离工艺等
    环境 温度 –40—150 ℃ 毫开尔文(mK)级低温
    湿度 常规环境30%—70% RH或更宽泛 真空环境
    电磁 常规环境 (除空间应用等特殊场景外) 电磁屏蔽
    下载: 导出CSV

    表 2  体扩散与表面扩散的特性对比[18]

    Table 2.  Comparison of physical characteristics between metal bulk diffusion and surface migration[18].

    特性体扩散表面扩散
    激活能较高(1—5 eV)较低(0.1—2.0 eV)
    温度依赖性较敏感更敏感(指数关系)
    主导机制空位、间隙跳跃、交换
    典型速率较慢更快(Ds≫Dbulk)
    下载: 导出CSV
  • [1]

    Acharya R, Abanin D A, Aghababaie-Beni L, Aleiner I, Andersen T I, Ansmann M, Arute F, Arya K, Asfaw A, Astrakhantsev N, et al. 2025 Nature 638 920Google Scholar

    [2]

    Gao D X, Fan D J, Zha C, Bei J H, Cai G Q, Cai J B, Cao S R, Chen F S, Chen J, Chen K, et al. 2025 Phys. Rev. Lett. 134 090601Google Scholar

    [3]

    Van Damme J, Massar S, Acharya R, Ivanov T, Perez Lozano D, Canvel Y, Demarets M, Vangoidsenhoven D, Hermans Y, Lai J G, Vadiraj A M, Mongillo M, Wan D, De Boeck J, Potočnik A, De Greve K 2024 Nature 634 74Google Scholar

    [4]

    Dieter K S 2005 Semiconductor Material and Device Characterization (Hoboken: Wiley IEEE Press) p127

    [5]

    Weber E R 1983 Appl. Phys. A 30 1Google Scholar

    [6]

    夸克M, 瑟达 J 著 (韩郑生 译) 2015 半导体制造技术(北京: 电子工业出版社)

    Quirk M, Serda J (translated by Han Z S) 2015 Semiconductor Manufacturing Technology (Beijing: Publishing House of Electronics Industry

    [7]

    Xiao H 2012 Introduction to Semiconductor Manufacturing Technology (Bellingham: SPIE Press

    [8]

    Mehrer H 2007 Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Heidelberg: Springer Verlag

    [9]

    Seshan K 2012 Handbook of Thin Film Deposition: Techniques, Processes, and Technologies (Amsterdam: Elsevier

    [10]

    Gas P, d'Heurle F M 1993 Appl. Surf. Sci. 73 153Google Scholar

    [11]

    Nicolet M A 1978 Thin Solid Films 52 415Google Scholar

    [12]

    Gösele U, Frank W, Seeger A 1980 Appl. Phys. 23 361Google Scholar

    [13]

    Nakashima K, Iwami M, Hiraki A 1975 Thin Solid Films 25 423Google Scholar

    [14]

    Murarka S P 2005 Diffusion Processes in Advanced Technological Materials (Amsterdam: Elsevier) pp239–281

    [15]

    Saiz E, Cannon R M, Tomsia A P 1999 Acta Mater. 47 4209Google Scholar

    [16]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J 2012 Phys. Rev. Lett. 108 096102Google Scholar

    [17]

    Prabriputaloong K, Piggott M R 1973 J. Am. Ceram. Soc. 56 177Google Scholar

    [18]

    Seebauer E G, Allen C E 1995 Prog. Surf. Sci. 49 265Google Scholar

    [19]

    Kirby K W 2008 M. S. Thesis (State College: The Pennsylvania State University

    [20]

    Wu N J, Yasunaga H, Natori A 1992 Appl. Surf. Sci. 260 75Google Scholar

    [21]

    李智瑞 2012 硕士学位论文 (北京: 北京化工大学)

    Li Z R 2012 M. S. Thesis (Beijing: Beijing University of Chemical Technology

    [22]

    陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2010 物理学报 59 3438Google Scholar

    Lu Y D, He X Q, En Y F, Wang X, Zhuang Z Q 2010 Acta Phys. Sin. 59 3438Google Scholar

  • [1] 邓永和, 张宇文, 谭恒博, 文大东, 高明, 吴安如. NiCu双金属纳米粒子的表面偏析、结构特征与扩散. 物理学报, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [2] 王一, 丁召, 杨晨, 罗子江, 王继红, 李军丽, 郭祥. 低温下InAs纳米结构在GaAs(001)表面形成机制的研究. 物理学报, 2021, 70(19): 193601. doi: 10.7498/aps.70.20210645
    [3] 张宇文, 邓永和, 文大东, 赵鹤平, 高明. Al原子在Ni基衬底表面的扩散及团簇的形成. 物理学报, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [4] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道. 物理学报, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [5] 陆裕东, 何小琦, 恩云飞, 王歆, 庄志强. 倒装芯片上金属布线/凸点互连结构中原子的定向扩散. 物理学报, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [6] 姚蕊, 王福合, 周云松. 氧原子在Zr(0001)表面附近的扩散. 物理学报, 2009, 58(13): 177-S182. doi: 10.7498/aps.58.177
    [7] 刘美林, 张宗宁, 李蔚, 赵骞, 祁阳, 张林. MgO(001)表面上沉积MgO薄膜过程的分子动力学模拟. 物理学报, 2009, 58(13): 199-S203. doi: 10.7498/aps.58.199
    [8] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [9] 谢国锋, 王德武, 应纯同. 分子动力学模拟Gd原子在Cu(110)表面的扩散过程. 物理学报, 2003, 52(9): 2254-2258. doi: 10.7498/aps.52.2254
    [10] 金进生, 夏阿根, 叶高翔. 带电液体基底表面银原子的凝聚和扩散行为. 物理学报, 2002, 51(9): 2144-2149. doi: 10.7498/aps.51.2144
    [11] 孙大亮, 于锡玲, 王 燕, 顾庆天. TGS晶体生长多形性和其表面扩散生长机制. 物理学报, 2000, 49(9): 1873-1877. doi: 10.7498/aps.49.1873
    [12] 龙德顺, 王炎森, 方渡飞, 汤家镛. 氧在金属及其氧化物中的表面及扩散势垒的计算. 物理学报, 1997, 46(10): 1894-1900. doi: 10.7498/aps.46.1894
    [13] 康晋锋, 陈新, 王佑祥, 韩汝琦, 熊光成, 连贵君, 李杰, 吴思诚. 正常态金属与氧化物高温超导薄膜界面扩散特性分析. 物理学报, 1995, 44(11): 1831-1838. doi: 10.7498/aps.44.1831
    [14] 杨传铮;钟福民. 二元扩散偶界面的元素扩散和金属间相的形成. 物理学报, 1989, 38(8): 1354-1359. doi: 10.7498/aps.38.1354
    [15] 霍裕昆. 聚变等离子体中α粒子的慢化-扩散. 物理学报, 1980, 29(3): 320-329. doi: 10.7498/aps.29.320
    [16] 陆全康. 关于等离子体横越磁场的非经典扩散. 物理学报, 1978, 27(2): 229-232. doi: 10.7498/aps.27.229
    [17] 谢党. 测定半导体扩散层表面浓度、p-n结深度及扩散系数的霍耳效应法. 物理学报, 1966, 22(8): 877-885. doi: 10.7498/aps.22.877
    [18] 杨正举. 体心立方金属中间隙杂质原子组态的弹性研究——Ⅰ.间隙杂质原子的位置及扩散激活能. 物理学报, 1966, 22(3): 281-293. doi: 10.7498/aps.22.281
    [19] 李克诚, 薛士蓥, 祝忠德, 黄詠. 磷在硅表面氧化层中的扩散. 物理学报, 1965, 21(3): 496-502. doi: 10.7498/aps.21.496
    [20] 金建中, 崔遂先. 金属油扩散泵的研究制造. 物理学报, 1960, 16(3): 168-174. doi: 10.7498/aps.16.168
计量
  • 文章访问数:  402
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-15
  • 修回日期:  2025-09-17
  • 上网日期:  2025-12-13
  • 刊出日期:  2026-01-05

/

返回文章
返回