Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tuning upconversion emissions of Ho3+ through changing excitation conditions

Gao Wei Wang Bo-Yang Sun Ze-Yu Gao Lu Zhang Chen-Xue Han Qing-Yan Dong Jun

Citation:

Tuning upconversion emissions of Ho3+ through changing excitation conditions

Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun
PDF
HTML
Get Citation
  • The upconversion (UC) emission properties of rare-earth ions are not only dependent on the host materials, but also relate to the excitation conditions. In this work, taking the Ho3+ ions for example, upconversion emission properties are studied in two NaYF4 and LiYF4 fluoride microcrystals through changing excitation conditions, namely the excitation power and the sample environment. The NaYF4:20%Yb3+/2%Ho3+ and NaYF4:20%Yb3+/2%Ho3+ microcrystal are synthesized by the hydrothermal method. The typical X-ray diffraction patterns of NaYF4:20%Yb3+/2%Ho3+ and LiYF4:20%Yb3+/2%Ho3+ microcrystal indicate that the prepared samples possess pure hexagonal phase NaYF4 structure and the pure tetragonal phase LiYF4 structure with high crystallinity, respectively. Most of NaYF4:20%Yb3+/2%Ho3+ microcrystals show uniform and regular rod shape with diameter and length of approximately 3 μm and 10 μm, respectively. Few rods with a length of approximately 5 μm are also observed. The LiYF4:20%Yb3+/2%Ho3+ microcrystals are all octahedral in shape with a smooth surface, the average size is around 10 μm. The spectral peculiarities of Ho3+ are investigated by using confocal microscopy equipment under near infrared 980 nm excitation. Beautiful patterns with different upconversion emissions of Ho3+ are discovered in single NaYF4 and LiYF4 microcrystal. As the excitation power increases, the upconversion emission of Ho3+ turns from green to pink in single NaYF4 microrods due to the cross-relaxation between Ho3+ and the energy back transfer from Ho3+ to Yb3+. However, in single LiYF4:Ho3+ microcrystal no similar phenomenon is observed. Nevertheless, when the powder of NaYF4 and LiYF4 microcrystals are excited by a 980 nm laser, increasing the power can turn the output colours of Ho3+ all green. Because particles outside the laser radiation are not directly covered by the laser, most of them are excited by the scattered light from the laser, and the actual excitation energy is low compared with at the center position. This result can be proved in the single NaYF4 and LiYF4 microcrystal under low excitation power. Thus, the results indicate that UC emission of rare-earth ions is controlled by changing the excitation condition. Using the new testing methods we can not only observe more interesting spectral phenomena, but also find a new way to further study its luminescence mechanism.
      Corresponding author: Dong Jun, dongjun@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604262), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2018JM1052), the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2019KJXX-058), the International (Regional) Exchange Program of Shaanxi Province, China (Grant No. 2019KW-027), and the Research Plan of Xi’an University of Posts & Telecommunications, China (Grant No. CXJJ2017001)
    [1]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237Google Scholar

    [2]

    Sang J K, Zhou J Y, Zhang J C, Zhou H, Li H H, Ci Z P, Peng S L, Wang Z F 2019 ACS Appl. Mater. Interfaces 11 20150Google Scholar

    [3]

    Wang Y H, Ohwaki J 1993 Appl. Phys. Lett. 63 3268Google Scholar

    [4]

    Strassel K, Ramanandan S P, Abdolhosseinzadeh S, Diethelm M, Nuesch F, Hany R 2019 ACS Appl. Mater. Interfaces 11 23428Google Scholar

    [5]

    Park Y I, Lee K T, Suh Y D, Hyeon T 2015 Chem. Soc. Rev. 44 1302Google Scholar

    [6]

    Feng Y S, Wu Y N, Zuo J, Tu L P, Quec I, Chang Y L, Cruzc L J, Chanc A, Zhang H 2019 Biomaterials 201 33

    [7]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [8]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 22 10889Google Scholar

    [9]

    Chen D Q, Yu Y L, Huang F, Yang A P, Wang Y S 2011 J. Mater. Chem. 21 6186Google Scholar

    [10]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [11]

    Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y 2014 Angew. Chem. Int. Ed. 53 1252Google Scholar

    [12]

    Zhou J J, Chen G X, Wu E, Bi G, Wu B T, Teng Y, Zhou S F, Qiu J R 2013 Nano Lett. 13 2241Google Scholar

    [13]

    Ma C S, Xu X X, Wang F, Zhou Z G, Liu D M, Zhao J B, Guan M, Lang C I, Jin Y D 2017 Nano. Lett. 17 2858Google Scholar

    [14]

    Han Q Y, Zhang C Y, Wang C, Wang Z J, Li C X, Gao W, Dong J, He E J, Zhang Z L, Zheng H R 2017 Sci. Rep. 7 5371Google Scholar

    [15]

    Chen B, Kong W, Liu Y, Lu Y H, Li M Y, Qiao X S, Fan X P, Wang F 2017 Angew. Chem. Int. Ed. 56 10383Google Scholar

    [16]

    Gao D L, Zhang X Y, Pang Q, Zhao J, Xiao G Q, Tian D 2018 J. Mater. Chem. C 6 8011Google Scholar

    [17]

    Gao D L, Zhao D, Xin H, Cai A J, Zhang X Y 2019 J. Mater. Chem. C 7 11879Google Scholar

    [18]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704Google Scholar

    [19]

    Wu S J, Duan N, Li X L, Tan G L, Ma X Y, Xia Y, Wang Z P, Wang H X 2013 Talanta 116 611Google Scholar

    [20]

    Tao F, Pan F, Wang Z J, Cai W L, Yao L Z 2010 CrystEngComm 12 4263Google Scholar

    [21]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Ga oW, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [22]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [23]

    Dominika P, Anna E, Bartosz F G, Tomasz G 2019 Sci. Rep. 9 8669Google Scholar

    [24]

    Tan X J, Xu S L, Liu F H, Wang X Y, Goodman B A. Xiong D K, Deng W 2019 J. Lumin. 209 95Google Scholar

    [25]

    Gao D L, Wang D, Zhang X Y, Feng X J, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622Google Scholar

    [26]

    Dai X, Lei L, Xia J, Han X, Hua Y, Xu S 2018 J. Alloys Compd. 766 261Google Scholar

    [27]

    Schmidt T, Müller G, Spanhel L, Kerkel K, Forchel A 1998 Chem. Mater. 10 65Google Scholar

    [28]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta., Part A 74 441Google Scholar

    [29]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

  • 图 1  (a) NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米晶体的XRD图谱

    Figure 1.  XRD patterns of (a) NaYF4:20%Yb3+/2%Ho3+ and (b) LiYF4:20%Yb3+/2%Ho3+ microcrystals.

    图 2  (a) NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米晶体的SEM图谱

    Figure 2.  The SEM images of (a) NaYF4:20%Yb3+/2%Ho3+ and (b) LiYF4:20%Yb3+/2%Ho3+ microcrystals.

    图 3  共聚焦显微光谱测试系统示意图

    Figure 3.  Schematic illustration of confocal microscopy setup.

    图 4  在980 nm激光激发下, 单颗NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和LiYF4:20.0%Yb3+/2.0%Ho3+微米晶体的上转换发射光谱图(激发功率为100 mW/cm2)

    Figure 4.  Upconversion emission spectra and corresponding optical micrographs of single NaYF4:20%Yb3+/2%Ho3+ and LiYF4:20%Yb3+/2%Ho3+ microcrystal under local excitation at 980 nm (100 mW/cm2).

    图 5  在980 nm激光激发下, 单颗粒(a) NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米晶的上转换发射与其激发功率的依赖关系, 插图为其对应光谱图案; (c)和(d)为对应不用激发功率下的峰面积, 插图为其随激发功率变化的红绿比图

    Figure 5.  (a), (b) Upconversion emission spectra and corresponding optical micrographs, (c), (d) the peak area of the green and red emission intensity and corresponding R/G ratio of single NaYF4:20%Yb3+/2%Ho3+ (a), (c) and LiYF4:20%Yb3+/2%Ho3+ (b), (d) microcrystal with excitation power densities increasing from 20 mW to 100 mW.

    图 6  在980 nm激光激发下 (a) NaYF4:20.0%Yb3+/2.0%Ho3+微米粉末和(b) LiYF4:20.0%Yb3+/2.0%Ho3+微米粉末的上转换发射与其激发功率的依赖关系, 插图为其对应发光光谱图案; (c)和(d)为对应不用激发功率下的峰面积图, 插图为其随激发功率变化的红绿比图

    Figure 6.  (a), (b) UC emission spectra and corresponding optical micrographs, (c), (d) the peak area of the green and red emission intensity and corresponding R/G ratio of cluster NaYF4:20%Yb3+/2%Ho3+ (a), (c) and LiYF4:20%Yb3+/2%Ho3+ (b), (d) microcrystals with excitation power densities increasing from 20 mW to 100 mW.

    图 7  Ho3+离子相应的能级图及其可能跃迁机理图

    Figure 7.  Energy level diagrams and proposed energy transfer pathways.

    图 8  在532 nm激发下, 单粒NaYF4:20.0%Yb3+/2.0%Ho3+微米晶体和 LiYF4:20.0%Yb3+/2.0%Ho3+微米晶的下转换发射光谱(a)及相应跃迁机理图(b)

    Figure 8.  (a) Downconversion emission spectra and (b) emission mechanism of single NaYF4:20%Yb3+/2%Ho3+ and LiYF4:20%Yb3+/2%Ho3+ microcrystal under laser 532 nm excitation.

  • [1]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237Google Scholar

    [2]

    Sang J K, Zhou J Y, Zhang J C, Zhou H, Li H H, Ci Z P, Peng S L, Wang Z F 2019 ACS Appl. Mater. Interfaces 11 20150Google Scholar

    [3]

    Wang Y H, Ohwaki J 1993 Appl. Phys. Lett. 63 3268Google Scholar

    [4]

    Strassel K, Ramanandan S P, Abdolhosseinzadeh S, Diethelm M, Nuesch F, Hany R 2019 ACS Appl. Mater. Interfaces 11 23428Google Scholar

    [5]

    Park Y I, Lee K T, Suh Y D, Hyeon T 2015 Chem. Soc. Rev. 44 1302Google Scholar

    [6]

    Feng Y S, Wu Y N, Zuo J, Tu L P, Quec I, Chang Y L, Cruzc L J, Chanc A, Zhang H 2019 Biomaterials 201 33

    [7]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [8]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 22 10889Google Scholar

    [9]

    Chen D Q, Yu Y L, Huang F, Yang A P, Wang Y S 2011 J. Mater. Chem. 21 6186Google Scholar

    [10]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [11]

    Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y 2014 Angew. Chem. Int. Ed. 53 1252Google Scholar

    [12]

    Zhou J J, Chen G X, Wu E, Bi G, Wu B T, Teng Y, Zhou S F, Qiu J R 2013 Nano Lett. 13 2241Google Scholar

    [13]

    Ma C S, Xu X X, Wang F, Zhou Z G, Liu D M, Zhao J B, Guan M, Lang C I, Jin Y D 2017 Nano. Lett. 17 2858Google Scholar

    [14]

    Han Q Y, Zhang C Y, Wang C, Wang Z J, Li C X, Gao W, Dong J, He E J, Zhang Z L, Zheng H R 2017 Sci. Rep. 7 5371Google Scholar

    [15]

    Chen B, Kong W, Liu Y, Lu Y H, Li M Y, Qiao X S, Fan X P, Wang F 2017 Angew. Chem. Int. Ed. 56 10383Google Scholar

    [16]

    Gao D L, Zhang X Y, Pang Q, Zhao J, Xiao G Q, Tian D 2018 J. Mater. Chem. C 6 8011Google Scholar

    [17]

    Gao D L, Zhao D, Xin H, Cai A J, Zhang X Y 2019 J. Mater. Chem. C 7 11879Google Scholar

    [18]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704Google Scholar

    [19]

    Wu S J, Duan N, Li X L, Tan G L, Ma X Y, Xia Y, Wang Z P, Wang H X 2013 Talanta 116 611Google Scholar

    [20]

    Tao F, Pan F, Wang Z J, Cai W L, Yao L Z 2010 CrystEngComm 12 4263Google Scholar

    [21]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Ga oW, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [22]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [23]

    Dominika P, Anna E, Bartosz F G, Tomasz G 2019 Sci. Rep. 9 8669Google Scholar

    [24]

    Tan X J, Xu S L, Liu F H, Wang X Y, Goodman B A. Xiong D K, Deng W 2019 J. Lumin. 209 95Google Scholar

    [25]

    Gao D L, Wang D, Zhang X Y, Feng X J, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622Google Scholar

    [26]

    Dai X, Lei L, Xia J, Han X, Hua Y, Xu S 2018 J. Alloys Compd. 766 261Google Scholar

    [27]

    Schmidt T, Müller G, Spanhel L, Kerkel K, Forchel A 1998 Chem. Mater. 10 65Google Scholar

    [28]

    Chen X P, Zhang Q Y, Yang C H, Chen D D, Zhao C 2009 Spectrochim. Acta., Part A 74 441Google Scholar

    [29]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] Arepati Xiakeer, Wang Lin-Xiang, Li Qing, Bai Yun-Feng, Munire Maimaiti. Preparation and temperature sensing properties of Tm3+, Yb3+ co-doped Bi2WO6 upconversion luminescent materials. Acta Physica Sinica, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [4] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [7] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [8] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [9] Gao Wei, Dong Jun. Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions. Acta Physica Sinica, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [10] Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong. Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Physica Sinica, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [11] Yang Jian-Zhi, Qiu Jian-Bei, Yang Zheng-Wen, Song Zhi-Guo, Yang Yong, Zhou Da-Cheng. Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors. Acta Physica Sinica, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [12] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [13] Zheng Long-Jiang, Li Ya-Xin, Liu Hai-Long, Xu Wei, Zhang Zhi-Guo. Up-conversion luminescence and temperature characteristics of Tm3+, Yb3+ co-doped CaWO4 polycrystal material. Acta Physica Sinica, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [14] Wang Da-Gang, Zhou Ya-Xun, Wang Xun-Si, Dai Shi-Xun, Shen Xiang, Chen Fei-Fei, Wang Sen. Upconversion luminescence of Tm3+/Ho3+/Yb3+ codoped tellurite glass used for white light emission. Acta Physica Sinica, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [15] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [16] Gan Zong-Song, Yu Hua, Li Yan-Ming, Wang Ya-Nan, Chen Hui, Zhao Li-Juan. Investigation on up-conversion luminescence of Tm3+ and Yb3+ codoped oxy-fluorosilicate glass ceramics. Acta Physica Sinica, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [17] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] Wen Lei, Zhang Li-Yan, Yang Jian-Hu, Wang Guo-Nian, Chen Wei, Hu Li- Li. Upconversion emission properties of Er3+ in fluoride (halide) phosphate tellurite glasses. Acta Physica Sinica, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] Zhao Li-Juan, Sun Ling-Dong, Xu Jing-Jun, Zhang Guang-Yin. . Acta Physica Sinica, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
Metrics
  • Abstract views:  11798
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2019
  • Accepted Date:  22 October 2019
  • Published Online:  05 February 2020

/

返回文章
返回