Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design

Chen Gui-Ling Ma Jia-Jia Sun Jia-Shi Zhang Jin-Su Li Xiang-Ping Xu Sai Zhang Xi-Zhen Cheng Li-Hong Chen Bao-Jiu

Citation:

Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design

Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu
PDF
HTML
Get Citation
  • In order to obtain the maximum characteristic intensities of the up-conversion luminescence in GdTaO4:RE/Yb(RE = Tm, Er) series, we establish the regression equation between the luminescent intensity of the phosphors and the rare earth doping concentration upon the 980 nm laser excitation based on the experimental optimization design. The Tm3+/Yb3+ doping samples are combined with the uniform design and quadratic general rotation combination design, meanwhile the Er3+/Yb3+ doping samples are optimized by the uniform design and cubic orthogonal phosphor step by step. The relationship between concentration and luminous intensity is analyzed. The results show that the changes of concentration of RE3+ (RE = Tm, Er) and Yb3+ can exert a significant effect on luminous intensity, and there exist extreme points of luminescent intensity in the test space. By solving the regression equation, we obtain the optimal doping concentration. The optimal samples are also prepared by the high-temperature solid state method. The XRD diffraction patterns of the optimal samples are analyzed. The results show that the samples are of pure phase, the doping of Li+ flux will inhibit the generation of reaction impurity phase, and the doping of rare earth will shift the diffraction peak to a high angle, with the peak shape remaining unchanged. The relationship between excitation power and luminescent intensity is analyzed. The results show that the blue light emission of Tm3+/Yb3+ co-doped phosphor is a three-photon process, and the green light emission of Er3+/Yb3+ co-coped phosphor is a two-photon process. The relationship between sample temperature and luminescent intensity is analyzed. The luminescent intensity of the sample decreases with the increase of the temperature, indicating temperature quenching. Finally, the quenching activated energy of the sample is calculated.
      Corresponding author: Sun Jia-Shi, sunjs@dlmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071048, 11774042), the Open Fund of the State Key Laboratory of Integrated Optoelectronics Granted, China (Grant No. IOSKL2019KF06), the High-level Personnel in Dalian Innovation Support Program, China (Grant No. 2019RQ072), the Postgraduate Education and Teaching Reform Project of Dalian Maritime University, China (Grant No. YJG2021515), and the Fundamental Research Funds for the Central Universities (Grant Nos. 3132022194, 3132021200, 3132019338).
    [1]

    Zhang W S, Gao Q, Zhou S, Li L J, Ma X Z 2021 Opt. Laser Technol. 114 107368

    [2]

    Chen Y Z, Peng F, Zhang Q L, Liu W P, Dou R Q, Ding S J, Luo J Q, Sun D L, Sun G H, Wang X F 2017 J. Lumin. 192 555Google Scholar

    [3]

    Dai T Y, Guo S X, Duan X M, Dou R Q, Zhang Q L 2019 Opt. Express 27 34205

    [4]

    Issler S L, Torardi C C 1995 J. Alloy Compd. 229 54Google Scholar

    [5]

    Li B, Gu Z N, Lin J H, Su M Z 2000 Mater. Res. Bull. 35 1921Google Scholar

    [6]

    Siqueira K P F, Carmo A P, Bell M J V, Dias A 2013 J. Lumin. 138 133Google Scholar

    [7]

    Brixner L H, Chen H 1983 J. Electrochem. Soc. 130 12Google Scholar

    [8]

    Roy A, Dwivedi A, Kumar D, Mishra H, Rai S B 2020 Ceram. Int. 46 24893Google Scholar

    [9]

    Roy A, Dwivedi A, Mishra H, Kumar D, Rai S B 2020 J. Alloy Compd. 821 2020

    [10]

    Sun G H, Zhang Q L, Luo J Q, Liu W P, Han S, Zheng L L, Li W M 2019 J. Lumin. 217 116831

    [11]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第1页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) p1 (in Chinese)

    [12]

    Sun J S, Shi L L, Li S W, Li J J, Li X P, Zhang J S, Cheng L H, Chen B J 2016 Mater. Res. Bull. 80 102Google Scholar

    [13]

    刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar

    Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar

    [14]

    赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖 2019 物理学报 68 213301Google Scholar

    Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z, Xu S, Cheng L H, Chen B J 2019 Acta Phys. Sin. 68 213301Google Scholar

    [15]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [16]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第164—170页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp164–170 (in Chinese)

    [17]

    杨帆 2020 硕士学位论文 (大连: 大连海事大学)

    Yang F 2020 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [18]

    任露泉 2009 回归设计及其优化 (北京: 科学出版社) 第12页

    Ren L Q 2009 Regression Design and Optimization (Beijing: Science Press) p12 (in Chinese)

    [19]

    He C, Yang K S, Liu L, Si Z J 2013 J. Rare Earths 31 790Google Scholar

    [20]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [21]

    Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 CrystEngComm 14 1760Google Scholar

    [22]

    Tian B N, Chen B J, Tian Y, Sun J S, Li X P, Zhang J S, Zhong H Y, Cheng L H, Hua R N 2012 J. Phys. Chem. Solids 73 1314Google Scholar

    [23]

    Liu X L, Han K, Gu M, Xiao L H, Ni C, Huang S M, Liu B 2007 Solid State Commun. 142 680Google Scholar

    [24]

    肖莉红, 顾牡, 刘小林, 张睿, 刘冰洁, 徐昕 2007 光谱学与光谱分析 27 1054Google Scholar

    Xiao L H, Gu M, Liu X L, Zhang R, Liu B J, Xu X 2007 Spectrosc. Spectral Anal. 27 1054Google Scholar

    [25]

    傅尚怡, 顾牡, 刘小林, 倪晨, 刘波, 黄世明 2010 光谱学与光谱分析 30 2317Google Scholar

    Fu S Y, Gu M, Liu X L, Ni C, Liu B, Huang S M 2010 Spectrosc. Spectral Anal. 30 2317Google Scholar

    [26]

    Liu W J, Zhang W J, Liu R X, Li G J 2021 New J. Chem. 45 9818Google Scholar

    [27]

    Yu H Q, Jiang P P, Chen B J, Sun J S, Cheng L H, Li X P, Zhang J S, Xu S 2020 Appl. Phys. A 126 690Google Scholar

    [28]

    Jung K Y 2020 RSC Adv. 10 16323Google Scholar

    [29]

    张洪杰, 苏锵 1988 应用化学 3 28

    Zhang H J, Su Q 1988 Chin. J. Appl. Chem. 3 28

  • 图 1  Tm3+/Yb3+共掺浓度与蓝光发光强度关系图

    Figure 1.  Relationship between Tm3+/Yb3+ co-doped concentration and blue emission intensity.

    图 2  (a) 旋转组合设计实验点发射光谱图(根据积分强度大小排序); (b) 序号10样品与最优样品同激发条件发射光谱图

    Figure 2.  (a) Emission spectra of rotary unitized design experimental point (sort by integrated results); (b) emission spectra of No. 10 and optimized sample under same excitation power.

    图 3  Er3+/Yb3+共掺浓度与绿光发光强度关系图

    Figure 3.  Relationship between Er3+/Yb3+ co-doped concentration and green emission intensity.

    图 4  (a) 正交多项式回归设计实验点发射光谱图(根据积分强度大小排序); (b) 序号20样品与最优样品同激发条件发射光谱图

    Figure 4.  (a) Emission spectra of orthogonal polynomial regression design experimental point (sort by integrated results). (b) emission spectra of No. 20 and optimized sample under same excitation power.

    图 5  GdTaO4系列样品XRD图谱与标准JCPDS#24-0441

    Figure 5.  XRD patterns of GdTaO4 series samples and standard JCPDS#24-0441.

    图 6  (a) Tm3+/Yb3+共掺最优样品变激发功率发射光谱图; (b) 蓝光波段和红光波段积分与工作电流拟合曲线

    Figure 6.  (a) Emission spectra of Tm3+/Yb3+ co-doping optimized sample for variable excitation power; (b) curves fitted between the integral of the blue, red bands and the operating current.

    图 8  (a) Tm3+/Yb3+最优样品能级敏化关系图; (b) Er3+/Yb3+最优样品能级敏化关系图

    Figure 8.  (a) Tm3+/Yb3+ optimized sample energy level sensitization chart; (b) Er3+/Yb3+ optimized sample energy level sensitization chart.

    图 7  (a) Er3+/Yb3+共掺最优样品变激发功率发射光谱图; (b) 绿波段和红光波段积分与工作电流拟合曲线

    Figure 7.  (a) Emission spectra of Er3+/Yb3+ co-doping optimized sample for variable excitation power; (b) curves fitted between the integral of the green, red bands and the operating current.

    图 9  (a) Tm3+/Yb3+最优样品发光积分强度与温度关系; (b) Er3+/Yb3+最优样品发光积分强度与温度关系

    Figure 9.  (a) Tm3+/Yb3+ optimized sample dependence of integrated intensity on temperature; (b) Er3+/Yb3+ optimized sample dependence of integrated intensity on temperature.

    表 1  Tm3+/Yb3+ U9(92)试验方案和积分强度

    Table 1.  Tm3+/Yb3+ U9(92) experimental design and integrated intensity.

    No.Factors${y_{\rm{b\_int} } }$/(arb. units)
    Tm3+/mol%Yb3+/mol%
    11 (0.1)4 (6.25)14548.3
    22 (0.9625)8 (13.25)40832.1
    33 (1.825)3 (4.5)16268.4
    44 (2.6875)7 (11.5)27236.0
    55 (3.55)2 (2.75)7918.2
    66 (4.4125)6 (9.75)10844.0
    77 (5.275)1 (1)2176.0
    88 (6.1375)5 (8)7370.5
    99 (7)9 (15)7673.2
    DownLoad: CSV

    表 2  Er3+/Yb3+ U11(112)试验方案和积分强度

    Table 2.  Er3+/Yb3+ U11(112) experimental design and integrated intensity.

    No.Factors${y_{\rm{g\_int}}}$/(arb. units)
    Er3+/mol%Yb3+/mol%
    11 (1)7 (32)2615.08
    22 (3.9)3 (14)65415.60
    33 (6.8)10 (45.5)13779.16
    44 (9.7)6 (27.5)67919.49
    55 (12.6)2 (9.5)53751.00
    66 (15.5)9 (41)27765.73
    77 (18.4)5 (23)60404.28
    88 (21.3)1 (5)27232.45
    99 (24.2)8 (36.5)25725.90
    1010 (27.1)4 (18.5)45363.83
    1111 (30)11 (50)5775.05
    DownLoad: CSV

    表 3  Tm3+/Yb3+自然因素水平及编码设计表

    Table 3.  Tm3+/Yb3+ natural factors level and coding table.

    xj(zj)z1z2
    Tm3+/mol%Yb3+/mol%
    $ r({z_{2 j}}) $0.420
    $ 1({z_{0 j}} + {\Delta _j}) $0.344418.5361
    $ 0({z_{0 j}}) $0.2115
    $ - 1({z_{0 j}} - {\Delta _j}) $0.075611.4639
    $ - r({z_{1 j}}) $0.0210
    $ {\Delta _j} = ({{{z_{2 j}} - {z_{1 j}}}})/{{2 r}} $0.13443.5361
    $ {x_j} = \dfrac{{{z_j} - {z_{0 j}}}}{{{\Delta _j}}} $$ {x_1} = \dfrac{{{z_1} - 0.21}}{{0.1344}} $$ {x_2} = \dfrac{{{z_2} - 15}}{{3.5361}} $
    DownLoad: CSV

    表 4  Tm3+/Yb3+二次通用旋转组合设计试验方案及蓝光积分结果

    Table 4.  Tm3+/Yb3+ scheme of quadratic general rotary unitized design and blue luminescence integrated results.

    No.Factors${y_{\rm{b\_int}} }$/
    (arb. units)
    $ {x_0} $$ {x_1}({z_1}) $$ {x_2}({z_2}) $$ {x_1}{x_2} $$ x_1^2 $$ x_2^2 $
    1111111103074.268
    211–1–11182246.127
    31–11–11152874.380
    41–1–111159604.598
    51r00r2099703.531
    61r00r2052894.450
    710r00r2102782.281
    810r00r292052.066
    910000091641.231
    10100000119721.420
    11100000107477.062
    12100000102883.388
    13100000100900.284
    DownLoad: CSV

    表 5  Er3+/Yb3+正交多项式回归设计试验方案及绿光积分结果

    Table 5.  Er3+/Yb3+ scheme of orthogonal polynomial regression design and green luminescence integrated results.

    No.schemeψ0X1
    (z1)
    X2
    (z1)
    X3
    (z1)
    X1
    (z2)
    X2
    (z2)
    X3
    (z2)
    X1X1
    (z1z2)
    ${y_{\rm{g\_int}} }$/
    (arb. unit)
    $ {z_1} $$ {z_2} $
    15121–11–1–31–1338813.91
    2516.331–11–1–1–13143767.25
    3520.671–11–11–1–3–139883.01
    45251–11–1311–334969.53
    57.331210–23–31–1049578.38
    67.3316.3310–23–1–13062691.10
    77.3320.6710–231–1–3056730.83
    87.332510–23311049814.24
    99.6712111–3–31–1–339812.41
    109.6716.33111–3–1–13–152462.51
    119.6720.67111–31–1–3150272.68
    129.6725111–3311338264.82
    1312121311–31–1354874.82
    141216.331311–1–13–956897.90
    151220.6713111–1–3350154.07
    1612251311311948139.09
    177.3316.3361723.89
    187.3316.3358839.98
    197.3316.3364899.02
    207.3316.3363139.10
    DownLoad: CSV

    表 6  旋转组合设计F方差检验和显著性分析

    Table 6.  Rotary unitized design F-variance test and significant analysis.

    计算
    项目
    偏差平方和自由度$ {F}_{比} $显著性
    α
    $ {S}_{回} $4995616451.05510.720.01
    $ {S_{\text{R}}} $652160821.937
    ${S_{\rm{lf}} }$230690012.8930.730.01
    ${S_{\text{e} } }$421470809.044
    $ {S}_{总} $5647777272.9912
    DownLoad: CSV

    表 7  正交多项式回归设计 F 方差检验和显著性分析

    Table 7.  Orthogonal polynomial regression design F-variance test and significant analysis.

    计算
    项目
    偏差平方和自由度${{F} }_{\text{比} }$显著性 $ \text{α} $
    $ {S}_{回} $900041174.40712.060.01
    $ {S_{\text{R}}} $85273837.778
    ${S_{\rm e } }$20165233.9530.380.01
    $ {S}_{总} $985315012.1015
    $ {\widehat y_0} $61434.84
    $ {\overline y _0} $63027.40
    DownLoad: CSV
  • [1]

    Zhang W S, Gao Q, Zhou S, Li L J, Ma X Z 2021 Opt. Laser Technol. 114 107368

    [2]

    Chen Y Z, Peng F, Zhang Q L, Liu W P, Dou R Q, Ding S J, Luo J Q, Sun D L, Sun G H, Wang X F 2017 J. Lumin. 192 555Google Scholar

    [3]

    Dai T Y, Guo S X, Duan X M, Dou R Q, Zhang Q L 2019 Opt. Express 27 34205

    [4]

    Issler S L, Torardi C C 1995 J. Alloy Compd. 229 54Google Scholar

    [5]

    Li B, Gu Z N, Lin J H, Su M Z 2000 Mater. Res. Bull. 35 1921Google Scholar

    [6]

    Siqueira K P F, Carmo A P, Bell M J V, Dias A 2013 J. Lumin. 138 133Google Scholar

    [7]

    Brixner L H, Chen H 1983 J. Electrochem. Soc. 130 12Google Scholar

    [8]

    Roy A, Dwivedi A, Kumar D, Mishra H, Rai S B 2020 Ceram. Int. 46 24893Google Scholar

    [9]

    Roy A, Dwivedi A, Mishra H, Kumar D, Rai S B 2020 J. Alloy Compd. 821 2020

    [10]

    Sun G H, Zhang Q L, Luo J Q, Liu W P, Han S, Zheng L L, Li W M 2019 J. Lumin. 217 116831

    [11]

    任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第1页

    Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) p1 (in Chinese)

    [12]

    Sun J S, Shi L L, Li S W, Li J J, Li X P, Zhang J S, Cheng L H, Chen B J 2016 Mater. Res. Bull. 80 102Google Scholar

    [13]

    刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红 2019 物理学报 68 053301Google Scholar

    Liu S Y, Zhang J S, Sun J S, Chen B J, Li X P, Xu S, Cheng L H 2019 Acta Phys. Sin. 68 053301Google Scholar

    [14]

    赵越, 杨帆, 孙佳石, 李香萍, 张金苏, 张希珍, 徐赛, 程丽红, 陈宝玖 2019 物理学报 68 213301Google Scholar

    Zhao Y, Yang F, Sun J S, Li X P, Zhang J S, Zhang X Z, Xu S, Cheng L H, Chen B J 2019 Acta Phys. Sin. 68 213301Google Scholar

    [15]

    孙佳石, 李香萍, 吴金磊, 李树伟, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201Google Scholar

    Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys. Sin. 66 100201Google Scholar

    [16]

    何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第164—170页

    He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp164–170 (in Chinese)

    [17]

    杨帆 2020 硕士学位论文 (大连: 大连海事大学)

    Yang F 2020 M. S. Thesis (Dalian: Dalian Maritime University) (in Chinese)

    [18]

    任露泉 2009 回归设计及其优化 (北京: 科学出版社) 第12页

    Ren L Q 2009 Regression Design and Optimization (Beijing: Science Press) p12 (in Chinese)

    [19]

    He C, Yang K S, Liu L, Si Z J 2013 J. Rare Earths 31 790Google Scholar

    [20]

    Van U 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [21]

    Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 CrystEngComm 14 1760Google Scholar

    [22]

    Tian B N, Chen B J, Tian Y, Sun J S, Li X P, Zhang J S, Zhong H Y, Cheng L H, Hua R N 2012 J. Phys. Chem. Solids 73 1314Google Scholar

    [23]

    Liu X L, Han K, Gu M, Xiao L H, Ni C, Huang S M, Liu B 2007 Solid State Commun. 142 680Google Scholar

    [24]

    肖莉红, 顾牡, 刘小林, 张睿, 刘冰洁, 徐昕 2007 光谱学与光谱分析 27 1054Google Scholar

    Xiao L H, Gu M, Liu X L, Zhang R, Liu B J, Xu X 2007 Spectrosc. Spectral Anal. 27 1054Google Scholar

    [25]

    傅尚怡, 顾牡, 刘小林, 倪晨, 刘波, 黄世明 2010 光谱学与光谱分析 30 2317Google Scholar

    Fu S Y, Gu M, Liu X L, Ni C, Liu B, Huang S M 2010 Spectrosc. Spectral Anal. 30 2317Google Scholar

    [26]

    Liu W J, Zhang W J, Liu R X, Li G J 2021 New J. Chem. 45 9818Google Scholar

    [27]

    Yu H Q, Jiang P P, Chen B J, Sun J S, Cheng L H, Li X P, Zhang J S, Xu S 2020 Appl. Phys. A 126 690Google Scholar

    [28]

    Jung K Y 2020 RSC Adv. 10 16323Google Scholar

    [29]

    张洪杰, 苏锵 1988 应用化学 3 28

    Zhang H J, Su Q 1988 Chin. J. Appl. Chem. 3 28

  • [1] Yan Xue-Wen, Zhang Jing-Lei, Zhang Zheng-Yu, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Gao Wei, Dong Jun. Enhancement mechanism of red up-conversion emission in single NaYbF4:2%Er3+@NaYbF4 micron core-shell structure. Acta Physica Sinica, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] Arepati Xiakeer, Wang Lin-Xiang, Li Qing, Bai Yun-Feng, Munire Maimaiti. Preparation and temperature sensing properties of Tm3+, Yb3+ co-doped Bi2WO6 upconversion luminescent materials. Acta Physica Sinica, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [4] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] Gao Wei, Wang Bo-Yang, Han Qing-Yan, Han Shan-Shan, Cheng Xiao-Tong, Zhang Chen-Xue, Sun Ze-Yu, Liu Lin, Yan Xue-Wen, Wang Yong-Kai, Dong Jun. Building vertical gold nanorod arrays to enhance upconversion luminescence of β-NaYF4: Yb3+/Er3+ nanocrystals. Acta Physica Sinica, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] Zhao Yue, Yang Fan, Sun Jia-Shi, Li Xiang-Ping, Zhang Jin-Su, Zhang Xi-Zhen, Xu Sai, Cheng Li-Hong, Chen Bao-Jiu. Experimental optimal design of Er3+/Yb3+ co-doped Ba5Gd8Zn4O21 phosphor and red upconversion luminescence properties. Acta Physica Sinica, 2019, 68(21): 213301. doi: 10.7498/aps.68.20191192
    [7] Gao Wei, Dong Jun, Wang Rui-Bo, Wang Zhao-Jin, Zheng Hai-Rong. Upconversion flourescence characteristics of Er3+/Yb3+ codoped NaYF4 and LiYF4 microcrystals. Acta Physica Sinica, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [8] Yang Jian-Zhi, Qiu Jian-Bei, Yang Zheng-Wen, Song Zhi-Guo, Yang Yong, Zhou Da-Cheng. Preparation and upconversion luminescence properties of Ba5SiO4Cl6: Yb3+, Er3+, Li+ phosphors. Acta Physica Sinica, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [9] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [10] Zheng Long-Jiang, Li Ya-Xin, Liu Hai-Long, Xu Wei, Zhang Zhi-Guo. Up-conversion luminescence and temperature characteristics of Tm3+, Yb3+ co-doped CaWO4 polycrystal material. Acta Physica Sinica, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [11] Peng Yong, Xing Ming-Ming, Luo Xi-Xian, Wang Li-Qiang. Synthesis and characteristic research of nanoparticles KY3F10: Yb, RE (RE=Er, Ho, Tm) by thermal decomposition. Acta Physica Sinica, 2012, 61(13): 137201. doi: 10.7498/aps.61.137201
    [12] Liu Ming-Yang, Sun Wei-Jin. Up-conversion sensitization luminescence in Pr3+and Yb3+ co-doped fluoride glasses. Acta Physica Sinica, 2011, 60(7): 077804. doi: 10.7498/aps.60.077804
    [13] Wang Da-Gang, Zhou Ya-Xun, Wang Xun-Si, Dai Shi-Xun, Shen Xiang, Chen Fei-Fei, Wang Sen. Upconversion luminescence of Tm3+/Ho3+/Yb3+ codoped tellurite glass used for white light emission. Acta Physica Sinica, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [14] Gan Zong-Song, Yu Hua, Li Yan-Ming, Wang Ya-Nan, Chen Hui, Zhao Li-Juan. Investigation on up-conversion luminescence of Tm3+ and Yb3+ codoped oxy-fluorosilicate glass ceramics. Acta Physica Sinica, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [15] Li Xu-Jie, Nie Qiu-Hua, Dai Shi-Xun, Xu Tie-Feng, Shen Xiang, Zhang Xiang-Hua. Low temperature emission characteristics of an ytterbium sensitized erbium-doped tellurite glass. Acta Physica Sinica, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [16] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [17] Yang Zhong-Min, Zhang Qin-Yuan, Liu Yue-Hui, Jiang Zhong-Hong. Mechanism of the enhanced upconversion emissions in Yb3+/Er3+-codoped germanate-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2013-2018. doi: 10.7498/aps.54.2013
    [18] Wen Lei, Yang Jian-Hu, Hu Li-Li. Determination of upconversion state lifetime and upconversion mechanisms of Er3+ in tellurite glasses. Acta Physica Sinica, 2004, 53(12): 4378-4381. doi: 10.7498/aps.53.4378
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] Wang Ji-You, Guo Wei-Lin, Lin Zhi-Ming, Song Guang-Zhi, Zhao Li-Juan, Zhang Cun-Zhou, Zhang Guang-Yin. . Acta Physica Sinica, 2002, 51(8): 1861-1864. doi: 10.7498/aps.51.1861
Metrics
  • Abstract views:  5274
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2022
  • Accepted Date:  07 April 2022
  • Available Online:  06 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回