-
Microwave waveforms, such as square waveforms, sawtooth waveforms and triangle waveforms are widely used in radar communication, electronic measurement and medical imaging and so on. Using photonic microwave technology to generate arbitrary microwave waveforms has been a research hotspot. In this paper, a photonic microwave waveform generation scheme based on dual-wavelength time domain synthesis is proposed and experimentally demonstrated. Used in this scheme mainly are two lasers, two single-drive Mach-Zehnder modulators, a wavelength division multiplexer and a tunable optical delay line. The two Mach-Zehnder modulators are respectively biased at different operating points. When two beams with different wavelengths are superimposed in the time domain, different microwave waveform outputs can be generated. Therefore, by adjusting the bias voltage and modulation depth of the modulator, the phase and amplitude of the modulated optical signal can be controlled, and finally the photonic microwave waveform is generated. At first, the generation mechanism of square waveform, sawtooth waveform and triangle waveform are analyzed, and the comparisons among ideal square waveform, sawtooth waveform, triangle waveform and their third-order waveforms are made through the simulation analysis. It is verified that third-order waveforms become close to the ideal waveforms. Since the proposed scheme produces higher-order components, and the waveforms of the first three orders are the same as the ideal waveforms, so the scheme has good waveform generation capability. And then square waveform, sawtooth waveform and triangle waveform with a repetition rate of 2.5 GHz are successfully generated experimentally. Thus, experimental results are well consistent with the theoretical analyses. In addition, the system also has good tunable characteristics. By changing the modulation frequency of the modulator, the frequency tuning of the output photonic microwave waveforms can be realized, and square waveform, sawtooth waveform and triangular waveform with a repetition rate of 5 GHz are also experimentally achieved. The repetition rate of the generated microwave waveform is mainly limited by the bandwidth of modulator and electrophotonic detector, so the devices with higher bandwidth can be used to generate arbitrary waveform with a higher repetition rate. Therefore, the scheme has good application prospects. -
Keywords:
- photonic microwave /
- microwave waveform generator /
- time-domain synthesis /
- Mach-Zehnder modulation
[1] Latkin A I, Boscolo S, Bhamber R S, Turitsyn S K 2008 34th European Conference on Optical Communication Brussels, Belgium, September 21−25, 2008 p Mo.3.F.4
[2] Bhamber R S, Latkin A I, Boscolo S, Turitsyn S K 2008 34th European Conference on Optical Communication Brussels, Belgium, September 21−25, 2008 p Th.1.B.2
[3] Latkin A I, Boscolo S, Bhamber R S, Turitsyn S K 2009 J. Opt. Soc. Am. B 26 1492Google Scholar
[4] Tonda-Goldstein S, Monsterleet A, Dolfi D, Huignard J P, Sape P, Chazelas J 2002 International Topical Meeting on Microwave Photonics Awaji, Japan, November 5−8, 2002 p136
[5] Yao J P 2011 Opt. Commun. 284 3723Google Scholar
[6] Chou J, Han Y, Jalali B 2003 IEEE Photonics Technol. Lett. 15 581Google Scholar
[7] Rashidinejad A, Weiner A M 2014 J. Lightwave Technol. 32 3383Google Scholar
[8] Li W Z, Kong F Q, Yao J P 2013 J. Lightwave Technol. 31 3780Google Scholar
[9] Jiang H Y, Yan L S, Sun Y F, Ye J, Pan W, Luo B, Zou X H 2013 Opt. Express 21 6488Google Scholar
[10] Wang C, Yao J P 2010 J. Lightwave Technol. 28 1652Google Scholar
[11] Fontaine N K, Geisler D J, Scott R P, He T, Heritage J P, Yoo S J B 2010 Opt. Express 18 22988Google Scholar
[12] Willits J T, Weiner A M, Cundiff S T 2008 Opt. Express 16 315Google Scholar
[13] Huang C B, Jiang Z, Leaird D, Caraquitena J, Weiner A 2008 Laser Photonics Rev. 2 227Google Scholar
[14] Liu W, Yao J 2014 J. Lightwave Technol. 32 3637Google Scholar
[15] Gao Y, Wen A, Zheng H, Liang D, Lin L 2016 Opt. Express 24 12524Google Scholar
[16] Li J, Zhang X, Hraimel B, Ning T, Pei L, Wu K 2012 J. Lightwave Technol. 30 1617Google Scholar
[17] Zhu D, Yao J 2015 IEEE Photonics Technol. Lett. 27 1410Google Scholar
[18] Li W, Wang W T, Zhu N H 2014 IEEE Photonics J. 6 1
[19] 张华芳, 王文睿, 于晋龙, 王菊, 杨恩泽 2016 物理学报 65 224203Google Scholar
Zhang H F, Wang W R, Yu J L, Wang J, Yang E Z 2016 Acta. Phys. Sin. 65 224203Google Scholar
[20] Jiang Y, Ma C, Bai G, Jia Z, Zi Y, Cai S 2015 IEEE Photonics Technol. Lett. 27 1725Google Scholar
[21] Jiang Y, Ma C, Bai G F, Qi X S, Tang Y L, Jia Z R, Zi Y J, Huang F Q 2015 Opt. Express 23 19442Google Scholar
[22] Chen W J, Zhu D, Chen Z W, Pan S L 2016 Opt. Express 24 28606Google Scholar
[23] Li J, Hao Z, Pei L, Ning T G, Zheng J J 2017 Chin. Opt. Lett. 15 090603Google Scholar
[24] Li X R, Wen A J, Tu Z Y, Xiu Z G 2018 Appl. Opt. 57 7398Google Scholar
-
图 1 基于双波长时域合成技术的微波波形发生器原理图, 图中LD为激光器, WDM为波分复用器, PC为偏振控制器, OC为3 dB光耦合器, MZM为马赫-曾德尔调制器, ODL为光延时线, AMP为微波放大器
Figure 1. Schematic diagram of the proposed microwave waveform generator based on dual-wavelength time domain synthesis technology. LD, laser diode; WDM, wavelength division multiplexer; PC, polarization controller; OC, 3 dB optical coupler; MZM, Mach-Zehnder modulator; ODL, optical delay line; AMP, amplifier.
-
[1] Latkin A I, Boscolo S, Bhamber R S, Turitsyn S K 2008 34th European Conference on Optical Communication Brussels, Belgium, September 21−25, 2008 p Mo.3.F.4
[2] Bhamber R S, Latkin A I, Boscolo S, Turitsyn S K 2008 34th European Conference on Optical Communication Brussels, Belgium, September 21−25, 2008 p Th.1.B.2
[3] Latkin A I, Boscolo S, Bhamber R S, Turitsyn S K 2009 J. Opt. Soc. Am. B 26 1492Google Scholar
[4] Tonda-Goldstein S, Monsterleet A, Dolfi D, Huignard J P, Sape P, Chazelas J 2002 International Topical Meeting on Microwave Photonics Awaji, Japan, November 5−8, 2002 p136
[5] Yao J P 2011 Opt. Commun. 284 3723Google Scholar
[6] Chou J, Han Y, Jalali B 2003 IEEE Photonics Technol. Lett. 15 581Google Scholar
[7] Rashidinejad A, Weiner A M 2014 J. Lightwave Technol. 32 3383Google Scholar
[8] Li W Z, Kong F Q, Yao J P 2013 J. Lightwave Technol. 31 3780Google Scholar
[9] Jiang H Y, Yan L S, Sun Y F, Ye J, Pan W, Luo B, Zou X H 2013 Opt. Express 21 6488Google Scholar
[10] Wang C, Yao J P 2010 J. Lightwave Technol. 28 1652Google Scholar
[11] Fontaine N K, Geisler D J, Scott R P, He T, Heritage J P, Yoo S J B 2010 Opt. Express 18 22988Google Scholar
[12] Willits J T, Weiner A M, Cundiff S T 2008 Opt. Express 16 315Google Scholar
[13] Huang C B, Jiang Z, Leaird D, Caraquitena J, Weiner A 2008 Laser Photonics Rev. 2 227Google Scholar
[14] Liu W, Yao J 2014 J. Lightwave Technol. 32 3637Google Scholar
[15] Gao Y, Wen A, Zheng H, Liang D, Lin L 2016 Opt. Express 24 12524Google Scholar
[16] Li J, Zhang X, Hraimel B, Ning T, Pei L, Wu K 2012 J. Lightwave Technol. 30 1617Google Scholar
[17] Zhu D, Yao J 2015 IEEE Photonics Technol. Lett. 27 1410Google Scholar
[18] Li W, Wang W T, Zhu N H 2014 IEEE Photonics J. 6 1
[19] 张华芳, 王文睿, 于晋龙, 王菊, 杨恩泽 2016 物理学报 65 224203Google Scholar
Zhang H F, Wang W R, Yu J L, Wang J, Yang E Z 2016 Acta. Phys. Sin. 65 224203Google Scholar
[20] Jiang Y, Ma C, Bai G, Jia Z, Zi Y, Cai S 2015 IEEE Photonics Technol. Lett. 27 1725Google Scholar
[21] Jiang Y, Ma C, Bai G F, Qi X S, Tang Y L, Jia Z R, Zi Y J, Huang F Q 2015 Opt. Express 23 19442Google Scholar
[22] Chen W J, Zhu D, Chen Z W, Pan S L 2016 Opt. Express 24 28606Google Scholar
[23] Li J, Hao Z, Pei L, Ning T G, Zheng J J 2017 Chin. Opt. Lett. 15 090603Google Scholar
[24] Li X R, Wen A J, Tu Z Y, Xiu Z G 2018 Appl. Opt. 57 7398Google Scholar
Catalog
Metrics
- Abstract views: 9150
- PDF Downloads: 91
- Cited By: 0