Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Far-field directional emission of fluorescence enhanced by dielectric microsphere and metallic planar nanolayers

Guo Fu-Zhou Chen Zhi-Hui Feng Guang Wang Xiao-Wei Fei Hong-Ming Sun Fei Yang Yi-Biao

Citation:

Far-field directional emission of fluorescence enhanced by dielectric microsphere and metallic planar nanolayers

Guo Fu-Zhou, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Fei Hong-Ming, Sun Fei, Yang Yi-Biao
PDF
HTML
Get Citation
  • Controlling the emission characteristics of fluorescent substances and increasing the intensity of fluorescence emission are crucial for fluorescence detecting technology in single-molecule detection, biomedicine, and sensing applications. Since fluorescence emission is isotropic in nature, the collected fluorescence is only accounted for a small fraction of the total emitted fluorescence. In this paper, a composite structure composed of dielectric microsphere and metallic planar nanolayers is proposed to enhance the fluorescence far-field directional emission intensity and improve the fluorescence collection efficiency. The excitation process and the emission process of quantum dots (QDs) located between the dielectric microspheres and the gold layer are investigated by the finite difference time domain (FDTD) method. In the emission process, the emission of QDs in a homogeneous medium is isotropic. Therefore, we usually select several special polarizations in theoretical analysis state for research. In this paper, we first study the effect of the structure on the fluorescence emission enhancement of QDs when the QDs are in the x-, y-, and z-polarization state. Some results can be obtained as shown below. When the radiation direction of the QDs is perpendicular to the microsphere plane layered structure, the structure is coupled with the emitted fluorescence, thereby realizing the directional enhancement of the emitted fluorescence of the QDs, and the obvious fluorescence enhancement is obtained in the x- and y-polarization state. Therefore, in the research, we choose and investigate the dipole light source of x-polarization state. We mainly study the influence of microsphere radius, refractive index, and QDs position on the fluorescence directional enhancement. The QDs as a fluorescent material are coated in polymethyl methacrylate (PMMA) to control the distance from the gold layer to tune the fluorescence enhancement. The structure is based on the synergistic effect among plasmon coupling, whispering gallery mode and photonic nanojet, which enhances the far-field fluorescence of QDs by a factor of 230, and the fluorescence collection efficiency is as high as 70%. Comparing with the enhanced fluorescence of the dielectric microspheres and the gold sphere dimer composite structure, the distance between the gold sphere dimers is not easy to control, and the QDs should be placed at specific positions between the gold spheres. The structure we propose is more convenient to implement. In this paper, not only the emission enhancement process of QDs is studied in detail, but also the excitation process of QDs is investigated. Our proposed dielectric microsphere metal planar nanolayered structure can enhance the excitation of QDs in most areas, proving that our designed structure can effectively realize the excitation enhancement of QDs. The above results have very important applications in the fluorescence biological detection, imaging, and light-emitting devices.
      Corresponding author: Chen Zhi-Hui, huixu@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175178), the Central Guidance on Local Science and Technology Development Fund of Shanxi Province, China (Grant No. YDZJSX2021A013), the Program for the Top Young Talents of Shanxi Province, China, and the Program for the Sanjin Outstanding Talents of China.
    [1]

    Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L 2021 Protein. Expr. Purif. 187 105952Google Scholar

    [2]

    Zhou M, Cao J, Akers W J 2016 Methods Mol. Biol. 1444 45Google Scholar

    [3]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [4]

    Itoh T 2012 Chem. Rev. 112 4541Google Scholar

    [5]

    Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H 2013 RSC Advances 3 14571Google Scholar

    [6]

    Lu C Y, Browne D E, Yang T, Pan J W 2007 Phys. Rev. Lett. 99 250504Google Scholar

    [7]

    Fan L, Sun X, Xiong C, Schuck C, Tang H X 2013 Appl. Phys. Lett. 102 153507Google Scholar

    [8]

    Marcu L 2012 Ann. Biomed. Eng. 40 304Google Scholar

    [9]

    Wang Z, Zheng Y, Zhao D, Zhao Z, Liu L, Pliss A, Zhu F, Liu J, Qu J, Luan P 2017 J. Innov. Opt. Heal. Sci. 11 1830001Google Scholar

    [10]

    Ge F, Yang X 2017 J. Mater. Sci. 53 4840Google Scholar

    [11]

    Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K 2021 Biosens. Bioelectron. 194 113577Google Scholar

    [12]

    Cheng Q, Wang S, Liu N 2021 IEEE Sens. J. 21 17785Google Scholar

    [13]

    Li L, Wang W, Luk T S, Yang X, Gao J 2017 ACS Photonics 4 501Google Scholar

    [14]

    Luo S, Li Q, Yang Y, Chen X, Wang W, Qu Y, Qiu M 2017 Laser & Photonics Rev. 11 1600299Google Scholar

    [15]

    Karvinen P, Nuutinen T, Hyvarinen O, Vahimaa P 2008 Optics Express 16 16364Google Scholar

    [16]

    Muriano A, Thayil K N A, Salvador J P, Loza-Alvarez P, Soria S, Galve R, Marco M P 2012 Sensor. Actuat. B:Chem. 174 394Google Scholar

    [17]

    Lin J H, Liou H Y, Wang C D, Tseng C Y, Lee C T, Ting C C, Kan H C, Hsu C C 2015 ACS Photonics 2 530Google Scholar

    [18]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [19]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser & Photonics Rev. 12 1800017Google Scholar

    [20]

    Choudhury S D, Badugu R, Nowaczyk K, Ray K, Lakowicz J R 2013 J. Phys. Chem. Lett. 4 227Google Scholar

    [21]

    Yan Y, Zeng Y, Wu Y, Zhao Y, Ji L, Jiang Y, Li L 2014 Opt. Express. 22 23552Google Scholar

    [22]

    Golmakaniyoon S, Hernandez-Martinez P L, Demir H V, Sun X W 2017 Appl. Phys. Lett. 111 093302Google Scholar

    [23]

    Nyman M, Shevchenko A, Shavrin I, Ando Y, Lindfors K, Kaivola M 2019 APL Photonics 4 076101Google Scholar

    [24]

    Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang M Q 2014 Phys. Chem. Chem. Phys. 16 11584Google Scholar

    [25]

    Liu Y S, Lin H C, Xu H L 2018 IEEE Photonics J. 10 1Google Scholar

    [26]

    Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X 2019 Langmuir 35 14833Google Scholar

    [27]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar

    [28]

    Liu C Y 2019 Crystals 9 198Google Scholar

    [29]

    Liu C Y, Lin F C 2016 Opt. Commun. 380 287Google Scholar

    [30]

    Mahariq I, Abdeljawad T, Karar A S, Alboon S A, Kurt H, Maslov A V 2020 Photonics 7 50Google Scholar

    [31]

    Sergeev A A, Sergeeva K A, Leonov A A, Voznesenskiy S S 2020 4th International Conference on Metamaterials and Nanophotonics (METANANO) Tbilisi, Georgia, 2020, Sep 14–18 pp261–263

    [32]

    Zhang W, Lei H 2020 Nanoscale 12 6596Google Scholar

    [33]

    Zhou S, Zhou T 2020 Appl. Phys. Express 13 042010Google Scholar

    [34]

    Kong S C, Simpson J J, Backman V 2008 IEEE Microw. Wirel. Compon. Lett. 18 4Google Scholar

    [35]

    Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second Edition (Hoboken: IEEE Press) pp85–96

    [36]

    Duan J, Song L, Zhan J 2010 Nano Res. 2 61Google Scholar

    [37]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [38]

    Palik E D 1985 Handbook of Optical Constants of Solids First Edition (Orlando: Academic Press) pp286–287

    [39]

    Das G M, Ringne A B, Dantham V R, Easwaran R K, Laha R 2017 Opt. Express 25 19822Google Scholar

    [40]

    Garrett C G B, Kaiser W, Bond W L 1961 Phys. Rev. 124 1807Google Scholar

    [41]

    Guo M, Ye Y H, Hou J, Du B 2015 Photonics Res. 3 339Google Scholar

    [42]

    Zhu H, Chen M, Zhou S, Wu L 2017 Macromolecules 50 660Google Scholar

  • 图 1  电介质微球(灰色球)和金属平面纳米层组成的复合结构 (a) 三维结构示意图; (b)—(d) 结构gp, ga, gs的侧视图, QD代表量子点

    Figure 1.  Composite structure composed of dielectric microsphere (the gray ball) and metallic planar nanolayers: (a) 3D schematic diagram of the structures; (b)–(d) the side views of the structures of gp, ga, gs in order, QD stands for quantum dot.

    图 2  (a) 不同偏振态下偶极子光源的功率曲线; (b)—(d) 依次为x, y, z偏振态下的偶极子光源在中心波长590 nm处的俯视和横截面电场分布图

    Figure 2.  (a) Power curves of quantum dots in different polarization states; (b)–(d) top-view and cross-sectional electric field profiles of the dipole light source at the center wavelength of 590 nm under the x, y, z polarization states in turn, respectively.

    图 3  量子点位于(0, 0, 0.78) μm处 (a) 3种结构的远场功率曲线图; (b)—(d) R = 2 μm, n = 1.5, 结构gp, ga和gs横截面处的电场分布图

    Figure 3.  Quantum dots are located at (0, 0, 0.78) μm: (a) Far-field power curves of the three structures; (b)–(d) plots of the electric field distribution at the cross-section of the gp, ga and gs structures at R = 2 μm, n = 1.5.

    图 4  n = 1.5且量子点位于(0, 0, 0.78) μm处, 不同半径电介质微球的远场功率曲线

    Figure 4.  Far-field power curves of the dielectric microsphere with different radii for n = 1.5 and the quantum dots are located at (0, 0, 0.78) μm.

    图 5  不同折射率电介质微球的电场强度和远场散射图 (a) n = 1.3; (b) n = 1.5; (c) n = 1.7; (d) n = 1.9; (e) n = 2.1

    Figure 5.  Eelectric field intensity and far-field scattering distributions of dielectric microsphere with different refractive indices: (a) n = 1.3; (b) n = 1.5; (c) n = 1.7; (d) n = 1.9; (e) n = 2.1.

    图 6  (a) R = 2 μm, n = 1.5时, 3个结构的远场收集效率; (b)—(e) 单色平面波长为405 nm处的激发电场图 (b) gp结构; (c) ga结构; (d), (e) gs结构的TE和TM偏振

    Figure 6.  (a) Far-field collection efficiencies of the three structures with R = 2 μm, n = 1.5; (b)–(e) excitation electric field maps at a wavelength of 405 nm in the monochromatic plane: (b) gp structure; (c) ga structure; (d), (e) the TE and TM polarizations of gs structure, respectively.

  • [1]

    Wang J, Sun C, Ji M, Wang B, Wang P, Zhou G, Dong B, Du W, Huang L, Wang H, Ren L 2021 Protein. Expr. Purif. 187 105952Google Scholar

    [2]

    Zhou M, Cao J, Akers W J 2016 Methods Mol. Biol. 1444 45Google Scholar

    [3]

    Zhou L, Zhou J, Lai W, Yang X, Meng J, Su L, Gu C, Jiang T, Pun E Y B, Shao L, Petti L, Sun X W, Jia Z, Li Q, Han J, Mormile P 2020 Nat. Commun. 11 1785Google Scholar

    [4]

    Itoh T 2012 Chem. Rev. 112 4541Google Scholar

    [5]

    Qian Z, Ma J, Shan X, Shao L, Zhou J, Chen J, Feng H 2013 RSC Advances 3 14571Google Scholar

    [6]

    Lu C Y, Browne D E, Yang T, Pan J W 2007 Phys. Rev. Lett. 99 250504Google Scholar

    [7]

    Fan L, Sun X, Xiong C, Schuck C, Tang H X 2013 Appl. Phys. Lett. 102 153507Google Scholar

    [8]

    Marcu L 2012 Ann. Biomed. Eng. 40 304Google Scholar

    [9]

    Wang Z, Zheng Y, Zhao D, Zhao Z, Liu L, Pliss A, Zhu F, Liu J, Qu J, Luan P 2017 J. Innov. Opt. Heal. Sci. 11 1830001Google Scholar

    [10]

    Ge F, Yang X 2017 J. Mater. Sci. 53 4840Google Scholar

    [11]

    Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K 2021 Biosens. Bioelectron. 194 113577Google Scholar

    [12]

    Cheng Q, Wang S, Liu N 2021 IEEE Sens. J. 21 17785Google Scholar

    [13]

    Li L, Wang W, Luk T S, Yang X, Gao J 2017 ACS Photonics 4 501Google Scholar

    [14]

    Luo S, Li Q, Yang Y, Chen X, Wang W, Qu Y, Qiu M 2017 Laser & Photonics Rev. 11 1600299Google Scholar

    [15]

    Karvinen P, Nuutinen T, Hyvarinen O, Vahimaa P 2008 Optics Express 16 16364Google Scholar

    [16]

    Muriano A, Thayil K N A, Salvador J P, Loza-Alvarez P, Soria S, Galve R, Marco M P 2012 Sensor. Actuat. B:Chem. 174 394Google Scholar

    [17]

    Lin J H, Liou H Y, Wang C D, Tseng C Y, Lee C T, Ting C C, Kan H C, Hsu C C 2015 ACS Photonics 2 530Google Scholar

    [18]

    Walia S, Shah C M, Gutruf P, Nili H, Chowdhury D R, Withayachumnankul W, Bhaskaran M, Sriram S 2015 Appl. Phys. Rev. 2 011303Google Scholar

    [19]

    Quaranta G, Basset G, Martin O J F, Gallinet B 2018 Laser & Photonics Rev. 12 1800017Google Scholar

    [20]

    Choudhury S D, Badugu R, Nowaczyk K, Ray K, Lakowicz J R 2013 J. Phys. Chem. Lett. 4 227Google Scholar

    [21]

    Yan Y, Zeng Y, Wu Y, Zhao Y, Ji L, Jiang Y, Li L 2014 Opt. Express. 22 23552Google Scholar

    [22]

    Golmakaniyoon S, Hernandez-Martinez P L, Demir H V, Sun X W 2017 Appl. Phys. Lett. 111 093302Google Scholar

    [23]

    Nyman M, Shevchenko A, Shavrin I, Ando Y, Lindfors K, Kaivola M 2019 APL Photonics 4 076101Google Scholar

    [24]

    Huang Y, Lin W, Chen K, Zhang W, Chen X, Zhang M Q 2014 Phys. Chem. Chem. Phys. 16 11584Google Scholar

    [25]

    Liu Y S, Lin H C, Xu H L 2018 IEEE Photonics J. 10 1Google Scholar

    [26]

    Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X 2019 Langmuir 35 14833Google Scholar

    [27]

    Chen Z, Taflove A, Backman V 2004 Opt. Express 12 1214Google Scholar

    [28]

    Liu C Y 2019 Crystals 9 198Google Scholar

    [29]

    Liu C Y, Lin F C 2016 Opt. Commun. 380 287Google Scholar

    [30]

    Mahariq I, Abdeljawad T, Karar A S, Alboon S A, Kurt H, Maslov A V 2020 Photonics 7 50Google Scholar

    [31]

    Sergeev A A, Sergeeva K A, Leonov A A, Voznesenskiy S S 2020 4th International Conference on Metamaterials and Nanophotonics (METANANO) Tbilisi, Georgia, 2020, Sep 14–18 pp261–263

    [32]

    Zhang W, Lei H 2020 Nanoscale 12 6596Google Scholar

    [33]

    Zhou S, Zhou T 2020 Appl. Phys. Express 13 042010Google Scholar

    [34]

    Kong S C, Simpson J J, Backman V 2008 IEEE Microw. Wirel. Compon. Lett. 18 4Google Scholar

    [35]

    Sullivan D 2013 Electromagnetic Simulation Using the FDTD Method, Second Edition (Hoboken: IEEE Press) pp85–96

    [36]

    Duan J, Song L, Zhan J 2010 Nano Res. 2 61Google Scholar

    [37]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [38]

    Palik E D 1985 Handbook of Optical Constants of Solids First Edition (Orlando: Academic Press) pp286–287

    [39]

    Das G M, Ringne A B, Dantham V R, Easwaran R K, Laha R 2017 Opt. Express 25 19822Google Scholar

    [40]

    Garrett C G B, Kaiser W, Bond W L 1961 Phys. Rev. 124 1807Google Scholar

    [41]

    Guo M, Ye Y H, Hou J, Du B 2015 Photonics Res. 3 339Google Scholar

    [42]

    Zhu H, Chen M, Zhou S, Wu L 2017 Macromolecules 50 660Google Scholar

  • [1] Preface to the special topic: Electrical/thermal properties of nanodielectrics. Acta Physica Sinica, 2024, 73(2): 020101. doi: 10.7498/aps.73.020101
    [2] Pan Qin-Jie, Zhao Can-Dong, Chen Qi, He Yu-Hui, Miao Xiang-Shui. Nanopore sensing specific enhancement technique for single molecule detection. Acta Physica Sinica, 2024, 73(10): 108702. doi: 10.7498/aps.73.20240159
    [3] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [4] Liu Xiao-Jun, Yang Xue. Mechanism of fluorescence enhancement of HClO detected by excited-state intramolecular proton transfer based HBT-OMe molecule. Acta Physica Sinica, 2023, 72(11): 113101. doi: 10.7498/aps.72.20222313
    [5] Yin Hong-Run, Ye Ming, Wu Yang, Liu Kai, Pan Hua-Ping, Yao Jia-Feng. Biological tissue detection based on electrical impedance spectroscopic tomograsphy. Acta Physica Sinica, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [6] Li Chang-Liang, Chen Zhi-Hui, Feng Guang, Wang Xiao-Wei, Yang Yi-Biao, Fei Hong-Ming, Sun Fei, Liu Yi-Chao. Micro-displacement detection of nanofluidic fluorescent particles based on waveguide-concentric ring resonator model. Acta Physica Sinica, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [7] Biological tissue detection based on electrical impedance spectroscopic tomography. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211600
    [8] Dong Hui-Ying, Qin Xiao-Ru, Xue Wen-Rui, Cheng Xin, Li Ning, Li Chang-Yong. Mode characteristics of asymmetric graphene-coated elliptical dielectric nano-parallel wires waveguide. Acta Physica Sinica, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [9] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [10] Ma Chao, Min Dao-Min, Li Sheng-Tao, Zheng Xu, Li Xi-Yu, Min Chao, Zhan Hai-Xia. Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics. Acta Physica Sinica, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [11] Liu Li-Shuang, Chou Xiu-Jian, Chen Tao, Sun Li-Ning. Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond. Acta Physica Sinica, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [12] Lu Jin-Lei, Wang Xiao-Chen, Rong Xiao-Hui, Liu Li-Yu. 3D micro/nano fabrication and its application in cancer biophysics. Acta Physica Sinica, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [13] Wang Hai-Yan, Dou Xiu-Ming, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Photoluminescence from plasmon-enhanced single InAs quantum dots. Acta Physica Sinica, 2014, 63(2): 027801. doi: 10.7498/aps.63.027801
    [14] He En-Jie, Zheng Hai-Rong, Gao Wei, Lu Ying, Li Jun-Na, Wei Ying, Wang Deng, Zhu Gang-Qiang. Mn2+ induced luminescence regulation and enhancement of Lu-based nanocrystals. Acta Physica Sinica, 2013, 62(23): 237803. doi: 10.7498/aps.62.237803
    [15] Zhang Zhi-Dong, Xiong Zu-Hong, Zhang Zhong-Yue, Wang Hong-Yan, Li Xue-Lian. Enhancing electric fields around nanospheresby parallel clapboards. Acta Physica Sinica, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [16] Du Ling-Xiao, Hu Lian, Zhang Bing-Po, Cai Xi-Kun, Lou Teng-Gang, Wu Hui-Zhen. Photoluminescence enhancement of colloidal quantum dots embedded in a microcavity. Acta Physica Sinica, 2011, 60(11): 117803. doi: 10.7498/aps.60.117803
    [17] Liu Lei, Yu Bin, Niu Han-Ben, Chen Dan-Ni. Nano-resolution imaging of filopodia in HeLa cells. Acta Physica Sinica, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [18] Meng Qing-Yu, Chen Bao-Jiu, Zhao Xiao-Xia, Yan Bin, Wang Xiao-Jun, Xu Wu. Luminescence intensity of Ag+ doped Y2O3:Eu nanocrystals. Acta Physica Sinica, 2006, 55(5): 2623-2627. doi: 10.7498/aps.55.2623
    [19] Liu Jun-Hui, Mao Yan-Li, Ma Wen-Bo, Wu Yi-Qun, Han Jun-He, Zhai Feng-Xiao. Three-photon-absorption induced fluorescence and optical limiting properties of a new organic compound. Acta Physica Sinica, 2005, 54(11): 5173-5177. doi: 10.7498/aps.54.5173
    [20] JIA WEI-YI, XIONG JI-WU. ENHANCEMENT OF FLUORESCENCE INDUCED BY SCATTERING FROM SUSPENDED PARTICLES. Acta Physica Sinica, 1983, 32(11): 1471-1473. doi: 10.7498/aps.32.1471
Metrics
  • Abstract views:  5037
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2022
  • Accepted Date:  25 April 2022
  • Available Online:  24 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回