Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanopore sensing specific enhancement technique for single molecule detection

Pan Qin-Jie Zhao Can-Dong Chen Qi He Yu-Hui Miao Xiang-Shui

Citation:

Nanopore sensing specific enhancement technique for single molecule detection

Pan Qin-Jie, Zhao Can-Dong, Chen Qi, He Yu-Hui, Miao Xiang-Shui
PDF
HTML
Get Citation
  • Nanopore sensors have become important tools for analyzing biomarkers, including but not limited to nucleic acids, proteins, and other biomolecules that play important roles in life. Though the nanopores themselves have no selectivity towards target molecules, higher sensitivity of nanopore sensing to the target biomarkers could be achieved with the help of the specificity enhancement technology. In this work, the basic principles of nanopore sensing are first introduced, then methods of modifying nanopore surface as well as the development and application of those selectivity enhancement technologies of nanopore sensing in recent years are reviewed. These enhancement technologies primarily fall into two categories: surface functionalization and molecular probes. Surface functionalization is further categorized based on the types of functional molecules used, while molecular probes are classified according to carrier forms. Finally, in this paper several challenges that nanopore sensing continues to encounter are discussed and some suggestions are made for its future development.
  • 图 1  (a)未被修饰的纳米孔和用APTMS修饰的纳米孔示意图, 插图是透射电子显微镜(TEM)拍摄的修饰前5.2 nm纳米孔图像 ; (b) 1000碱基长度的 DNA 在 pH 6.0, 7.0和8.0条件下通过被修饰的 5.2 nm 纳米孔电流迹线图, io为开孔电流, ib为阻塞电流, tD为DNA过孔时间[26]

    Figure 1.  (a) Schematic of an uncoated and an APTMS-coated nanopore, inset is a TEM image of a 5.2 nm nanopore before coating; (b) 1 kbp DNA translocating through a coated 5.2 nm pore at pH 6.0, 7.0, and 8.0, where io is the open-pore current, ib is the blocked-level current, and tD is the translocation time[26].

    图 2  (a)未被修饰的纳米孔和用SDS修饰的纳米孔示意图; (b)未修饰(蓝线)和SDS修饰纳米孔(红线)测得的代表性DNA过孔事件[27]

    Figure 2.  (a) Schematic diagram of the uncoated and SDS coated pore; (b) typical representative translocation event observed with uncoated (blue) and SDS coated nanopore (red)[27].

    图 3  (a)淀粉样蛋白β通过流体脂质双分子层修饰的纳米孔示意图; (b) 不同聚类待测分子过孔引起的阻塞电流、过孔时间(∆I, td)数据产生的散点图, 黄色星号表示每种聚类产生的阻塞电流平均值 (i) 球形低聚物, (ii) 短原纤维, (iii) 长原纤维, (iv) 纤维[30]

    Figure 3.  (a) Schematic representation of amyloid-β translocation through a nanopore modified by a fluid lipid bilayer; (b) scattered plot of blocking currents generated by different clusters, with yellow asterisks indicating the average blocking currents generated by each cluster, (i) spherical oligomer, (ii) short protofibril, (iii) long protofibril, (iv) fiber[30].

    图 4  (a)葡萄糖氧化酶通过未修饰的纳米孔示意图(左), EDC/NHS交联反应后葡萄糖氧化酶通过半胱氨酸修饰的纳米孔示意图(右); (b) 两种过孔事件的阻塞电流、过孔时间散点图以及直方图[31]

    Figure 4.  (a) Glucose oxidase through the unmodified nanopore (left), and glucose oxidase through the cysteine-modified nanopore after EDC/NHS cross-linking reaction (right); (b) blocked current scatter plots and histograms of the two translocation events[31].

    图 5  (a) 两种凝血酶通过官能化纳米孔进行识别示意图; (b) 待测分子引起的相对电流阻塞、孔内停留时间散点图右上; (c) 采用机器学习方法处理数据后获得的识别率混淆矩阵(右下)[39]

    Figure 5.  (a) Schematic illustration of two thrombin species identified by functionalized nanopores; (b) scatter diagram of relative current obstruction and in-hole residence time caused by molecules to be measured; (c) the recognition rate confusion matrix obtained after processing data using machine learning methods[39].

    图 6  (a)使用官能化纳米孔选择性检测 miRNA-21 的方法 (i)纳米孔内壁采用金膜改性;(ii)巯基修饰的DNA1与纳米孔壁结合; (iii) MCH阻断活性位点; (iv) DNA1与纳米孔内壁结合, 特异性识别miRNA-21; (v) 引入发夹 H1 和 H2 以引发杂化链式反应; (b)官能化纳米孔在不同浓度miRNA-21(0.1pM—0.5 nM)下的I-V曲线(10 mM KCl)[42]

    Figure 6.  (a)Strategies for selective detection of miRNA-21 using functionalized nanopore: (i) the inner wall of the bare nanopore was modified with gold film; (ii) the sulfhydryl-modified DNA1 binds to the wall of the nanopore; (iii) the excess active site was blocked with MCH; (iv) DNA1 bound to the inner wall of the nanopore specifically recognized miRNA-21; (v) introducing hairpins H1 and H2 to initiate the hybrid chain reaction; (b) IV curves (10 mM KCl) of functionalized nanopore at different concentrations of miRNA-21 (0.1pM—0.5 nM)[42].

    图 7  (a)纳米孔修饰以及适配体与HAdV样品相互作用示意图; (b)归一化的电流整流比[43]

    Figure 7.  (a) Scheme depicting the modification of the nanopore and the interaction of the aptamer with infectious HAdV samples; (b) normalized current rectification ratio[43].

    图 8  (a)纳米移液器共价修饰流程示意图; (b)检测不同浓度N蛋白的纳米移液器的I-V曲线; (c)不同蛋白质引起的归一化离子电流变化[47]

    Figure 8.  (a) Schematic description of the covalent modification procedures of nanopipettes; (b) I-V curves of the nanopipettes for detecting different concentrations of the N protein; (c) normalized ionic current changes caused by different proteins[47].

    图 9  (a)未与配体结合(开放)和与配体结合(闭合)状态下的GBP示意图;(b)不同半乳糖浓度下的电流迹线(左), 闭合 (L1) 和开放 (L2) 构象在 30s内的分布图(右)[49]

    Figure 9.  (a) Schematic diagram of GBP in the ligand-free (open) and ligand-bound (closed) states; (b) current trace at different galactose concentrations (left), histogram of the closed (L1) and open (L2) conformations in 30s (right)[49].

    图 10  (a)通过DNA链杂交将Ty1固定在ClyA纳米孔上的方法示意图; (b)添加不同浓度的刺突蛋白前后 ClyA-f-Ty1 的代表性电流迹线[50]

    Figure 10.  (a) Schematic diagram of the method of fixing Ty1 on ClyA nanopore by DNA strand hybridization; (b) the representative current trace of ClyA-f-Ty1 before and after the addition of different concentrations of spike protein[50].

    图 11  (a)t-FhuA纳米孔检测Bs的示意图; (b)不同Bs浓度下的纳米孔电流迹线[51]

    Figure 11.  (a) Schematic diagram of t-FhuA nanopore detection of Bs; (b) nanopore current traces at different Bs concentrations[51].

    图 12  (a)锥形纳米孔中生物素和链霉亲和素之间的特异性结合示意图; (b)BSA, Lys以及不同浓度的链霉亲和素引起的电流下降比例[52]

    Figure 12.  (a) Schematic diagram of specific binding between biotin and streptavidin in conical nanopore; (b) the proportion of current drop caused by BSA, Lys, and streptavidin at different concentrations[52].

    图 13  (a) β-CD官能化锥形纳米孔的流程及其对映异构体的手性识别示意图; (b)加入等浓度L-His和D-His时纳米孔的电流变化比[58]

    Figure 13.  (a) Process of β-CD functionalized conical nanopore and the chiral recognition diagram of its enantiomers; (b) current change ratio upon addition of L-His and D-His in equal concentration[58].

    图 14  (a) PNRSS结构示意图, 孔隙限制处的反应部分(棕色)被苯硼酸(PBA)修饰. PBA 作为固定反应物, 结合目标分析物(如儿茶酚胺)并报告传感事件, 蓝色、绿色和黄色区域分别代表 PNRSS 链的延伸部分、牵引部分和系绳部位; (b)振幅 SD 与阻塞百分比Ib的散点图, 蓝色 (L-N)、橙色 (D-N)、黄色 (L-E) 和紫色 (D-E)[61]

    Figure 14.  (a) PNRSS structure diagram, the reactive portion (brown) at the pore limit is modified by phenylboric acid (PBA), PBA acts as a fixed reactant, binds to target analytes (such as catecholamine) and reports sensing events, the blue, green, and yellow areas represent the PNRSS chain extension, traction, and tether, respectively; (b) scatter plot of amplitude SD versus percentage blockade Ib, blue (L-N), orange (D-N), yellow (L-E), and purple (D-E)[61].

    图 15  (a)与MS结合的短双链DNA分子通过纳米孔示意图; (b)与MS结合的ssBio34 (红色)和dsBio34 (蓝色)事件频率与施加电压的关系[68]

    Figure 15.  (a) Schematic diagram of translocation of short double-stranded DNA molecules bound to MS through nanopores; (b) event rate vs applied voltage for ssBio34 (red) and dsBio34 (blue) with MS bound[68].

    图 16  (a)固态纳米孔用于CRP检测示意图, 右上图为15 nm孔径的纳米孔TEM图像; (b)CRP、适配体和 CRP-适配体复合物通过纳米孔的阻塞电流比以及过孔时间的散点图与直方图[72]

    Figure 16.  (a) Schematic diagram of solid-state nanopores used for CRP detection, the up right is a TEM image of an aperture of 15 nm in diameter; (b) scatter plots and histograms of blocking current ratios and times of translocation of CRP, aptamer, and CRP-aptamer complexes through nanopore[72].

    图 17  利用气溶素(Aerolysin)纳米孔进行多重生物标志物鉴别以及不同生物标志物引起的相应阻塞电流事件示意图[73]

    Figure 17.  Schematic illustration of multiplexed biomarker discrimination with the aerolysin nanopore and the corresponding blocking current events induced by different biomarkers[73].

    图 18  (a)石英纳米移液管选择性检测CEA分子示意图, 左边的分子代表Apt-MNPs, 右边的分子代表CEA-Apt-MNP复合物; (b)在+400 mV下1 mol/L KCl的CEA和Apt-MNP混合溶液的CEA-Apt-MNPs(左)和Apt-MNP(右)相应阻塞信号的电流迹线; (c)使用适配体官能化MNPs分离CEA的策略[84]

    Figure 18.  (a) Schematic illustration of selective detection of CEA molecules with a quartz nanopipette, the left molecule represents the Apt-MNPs, and the right one refers to CEA-Apt-MNP complexes; (b) current-time trace for the presence of a mixed solution of CEA and Apt–MNPs with 1 mol/L KCl at +400 mV, the arrow points to the current traces of the corresponding blockage signals of CEA-Apt-MNPs (left) and Apt-MNPs (right); (c) the strategy for separation of CEA using aptamer functionalized MNPs[84].

    图 19  基于夹心法分析, 点击化学以及纳米孔传感来检测生物标志物的方法示意图[85]

    Figure 19.  Schematic diagram of a method for detecting biomarkers based on sandwich assay, click chemistry, and nanopore sensing[85].

    图 20  (a)载体制备示意图; (b) α-Syn低聚物与DNA载体结合示意图. (c) DNA载体与不同α-Syn低聚物结合的统计结果 (i) 每个样品的典型电流迹线, 峰值电流随着α-Syn低聚物聚合时间的延长而逐渐增大; (ii) 每个样品的3个代表性信号[93]

    Figure 20.  (a) Schematic diagram of carrier preparation; (b) schematic diagram of α-Syn oligomer binding to DNA carrier; (c) statistical results of binding of DNA vectors to different α-Syn oligomers: (i) typical current trace for each sample; the peak current increases gradually with the extension of polymerization time of α-Syn oligomer; (ii) three representative signals for each sample[93].

    图 21  (a) DNA载体的2D示意图, 具有凝血酶和AChE的特异性探针; (b)在–200 mV下记录的电流时间迹线, 并在5 kHz下滤波, 清楚显示3个电平, 第1个与DNA载体相关, 第2个与凝血酶相关, 第3个与AChE相关[65]

    Figure 21.  (a) 2D schematic of the λ-DNA carrier with two independent aptamer probes specific to thrombin and AChE; (b) typical current-time trace recorded at –200 mV and re-filtered at 5 kHz clearly showing three levels, the 1st associated with the DNA carrier, 2 nd with thrombin and 3 rd from AChE[65].

    图 22  (a)带有分子信标的DNA载体制备及其与相应miRNA结合示意图; (b)存在miRNA(let-7 a, miR-375-3p和miR-141-3p)的情况下, DNA载体过孔的代表性光子和电流时间迹线, 代表 5.6, 10 和 38.5 kbp DNA 片段长度的过孔事件的3个电信号用实心圆、方形和星号标记, 光信号中相应同步事用圆圈标记[95]

    Figure 22.  (a) Schematic representation of the preparation of size-coded DNA probes and their binding to respective miRNA targets; (b) representative photon and current time traces of DNA carrier translocations in the presence of miRNAs (let-7 a, miR-375-3p, and miR-141-3p), three electrical signals representing translocation events of 5.6, 10, and 38.5 kbp DNA fragment lengths are marked with a filled circle, square, and asterisk, the corresponding synchronization in the optical signal is marked with a circle[95].

    图 23  目标DNA存在的情况下, DNA哑铃纳米开关的拓扑变化从“开放”状态转变到“封闭”状态以及代表性电流迹线示意图[98]

    Figure 23.  Schematic diagram of the topological change of the DNA dumbbell nanoswitch from the “open” state to the “closed” state in the presence of the target nucleic acid and representative current traces[98].

    图 24  (a) opTET2 和 opTET2/SA 的原理图, 红色T代表碱基的生物素修饰; (b) opTET结构的原子力显微镜(AFM) 图像; (c) DNA 四面体opTET2 和 opTET2/SA 通过 30 nm 纳米孔过孔事件的散点图与直方图[102]

    Figure 24.  (a) Schematic diagram of opTET2 and opTET2/SA.The red T representing biotin modification of the base; (b) AFM images of opTET structures; (c) scatter plots and histograms of DNA tetrahedron opTET2 and opTET2/SA translocation events through 30 nm nanopore[102].

    表 1  本综述总结的目标生物分子对应的特异性增强技术以及检测极限

    Table 1.  Specific enhancement techniques and detection limits corresponding to target biomolecules summarized in this review.

    特异性
    增强技术
    目标生物分子 纳米孔类型 检测极限
    表面官能化 α-thrombin
    γ-thrombin
    SiNx N/A[39]
    miRNA-21 Quartz 0.1pM[42]
    HAdV
    SARS-CoV-2
    PET 6pfu/mL[43]
    104 copies/mL[43]
    N protein Nanopipette 73.204pg/ml[47]
    Neuraminidase ClyA 38 nmol/L[49]
    SARS-CoV-2 Spike Protein ClyA 2.3 nmol/L[50]
    Barstar t-FhuA 12.6 nmol/L[51]
    Streptavidin PET N/A[52]
    L-His, D-His PET N/A[58]
    L-Trp PI N/A[59]
    norepinephrine epinephrine MspA 1 uM[61]
    ribonucleotide MspA N/A[62]
    分子探针 miR155 SiNx 10 nmol/L[68]
    C-reactive protein SiNx 0.3 ng/μL[72]
    alpha-1 antitrypsin
    Tau 381
    BACE1
    Aerolysin 77.9 fmol/L[73]
    6.79 fmol/L[73]
    86.4 fmol/L[73]
    miRNA-21 Glass 5 nmol/L[83]
    Carcinoembryonic- antigen Quartz 0.01 nmol/L[84]
    alpha fetoprotein α-HL 1 fmol/L[85]
    ESAT-6/CFP-10 α-HL 10 amol/L[86]
    α-Syn Quartz 2.2pmol/L[93]
    Thrombin
    AChE
    Quartz N/A[65]
    miR-375-3p
    miR-141-3p
    SiNx 8 fmol/L[95]
    5 fmol/L[95]
    E. coli DH5α 16 SrRNA
    Salmonella 16 SrRNA
    A. Baumanii 16 SrRNA
    Glass N/A[98]
    Streptavidin SiNx N/A[102]
    DownLoad: CSV
  • [1]

    Yamazaki H, Hu R, Henley R Y, Halman J, Afonin K A, Yu D, Zhao Q, Wanunu M 2017 Nano Lett. 17 7067Google Scholar

    [2]

    Kim J D, Lee Y G 2014 Biomed. Opt. Express 5 2471Google Scholar

    [3]

    Verschueren D, Shi X, Dekker C 2019 Small Methods 3 1800465Google Scholar

    [4]

    Fologea D, Gershow M, Ledden B, McNabb D S, Golovchenko J A, Li J 2005 Nano Lett. 5 1905Google Scholar

    [5]

    Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov A P, Edel J B 2020 Nat. Rev. Mater. 5 931Google Scholar

    [6]

    Elaguech M A, Bahri M, Djebbi K, Zhou D, Shi B, Liang L, Komarova N, Kuznetsov A, Tlili C, Wang D 2022 Food Chem. 389 133051Google Scholar

    [7]

    Beamish E, Tabard-Cossa V, Godin M 2019 ACS Sens. 4 2458Google Scholar

    [8]

    Wang L, Han Y J, Zhou S, Guan X Y 2014 Biosens. Bioelectron. 62 158Google Scholar

    [9]

    Oh S, Lee M K, Chi S W 2019 ACS Sens. 4 2849Google Scholar

    [10]

    He L, Tessier D R, Briggs K, Tsangaris M, Charron M, McConnell E M, Lomovtsev D, Tabard-Cossa V 2021 Nat. Commun. 12 5348Google Scholar

    [11]

    Chen X H, Zhou S, Wang Y J, Zheng L, Guan S, Wang D Q, Wang L, Guan X Y 2023 TrAC Trends Anal. Chem. 162 117060Google Scholar

    [12]

    Ying Y L, Zhang J, Gao R, Long Y T 2013 Angew. Chem. Int. Ed. 52 13154Google Scholar

    [13]

    Haque F, Li J H, Wu H C, Liang X J, Guo P X 2013 Nano Today 8 56Google Scholar

    [14]

    Li S J, Xia N, Yuan B Q, Du W M, Sun Z F, Zhou B B 2015 Electrochim. Acta 159 234Google Scholar

    [15]

    Ali M, Neumann R, Ensinger W 2010 ACS Nano 4 7267Google Scholar

    [16]

    Ding D F, Gao P C, Ma Q, Wang D G, Xia F 2019 Small 15 1804878Google Scholar

    [17]

    Wang H Y, Gu Z, Cao C, Wang J, Long Y T 2013 Anal. Chem. 85 8254Google Scholar

    [18]

    Piguet F, Ouldali H, Pastoriza-Gallego M, Manivet P, Pelta J, Oukhaled A 2018 Nat. Commun. 9 966Google Scholar

    [19]

    Liu Y, Zhang S Y, Wang Y Q, Wang L Y, Cao Z Y, Sun W, Fan P P, Zhang P K, Chen H Y, Huang S 2022 J. Am. Chem. Soc. 144 13717Google Scholar

    [20]

    Hou G L, Zhang H C, Xie G H, Xiao K, Wen L P, Li S H, Tian Y, Jiang L 2014 J. Mater. Chem. A 2 19131Google Scholar

    [21]

    Guo L P, Liu Y C, Zeng H O, Zhang S P, Song R Y, Yang J, Han X, Wang Y, Wang L D 2024 Adv. Mater. 36 2307242Google Scholar

    [22]

    Ying Y L, Hu Z L, Zhang S L, Qing Y J, Fragasso A, Maglia G, Meller A, Bayley H, Dekker C, Long Y T 2022 Nat. Nanotechnol. 17 1136Google Scholar

    [23]

    Mayer S F, Cao C, Dal Peraro M 2022 iScience 25 104145Google Scholar

    [24]

    Lee K, Park K B, Kim H J, Yu J S, Chae H, Kim H M, Kim K B 2018 Adv. Mater. 30 1704680Google Scholar

    [25]

    Wanunu M, Meller A 2007 Nano Lett. 7 1580Google Scholar

    [26]

    Anderson B N, Muthukumar M, Meller A 2013 ACS Nano 7 1408Google Scholar

    [27]

    Soni N, Chandra Verma N, Talor N, Meller A 2023 Nano Lett. 23 4609Google Scholar

    [28]

    Tang Z P, Lu B, Zhao Q, Wang J J, Luo K F, Yu D P 2014 Small 10 4332Google Scholar

    [29]

    Schneider G F, Xu Q, Hage S, Luik S, Spoor J N H, Malladi S, Zandbergen H, Dekker C 2013 Nat. Commun. 4 2619Google Scholar

    [30]

    Yusko E C, Prangkio P, Sept D, Rollings R C, Li J, Mayer M 2012 ACS Nano 6 5909Google Scholar

    [31]

    Li Q, Ying Y L, Liu S C, Lin Y, Long Y T 2019 ACS Sens. 4 1185Google Scholar

    [32]

    Feng S L, Chen C T, Wang W, Que L 2018 Biosens. Bioelectron. 105 36Google Scholar

    [33]

    Wilson D S, Szostak J W 1999 Annu. Rev. Biochem. 68 611Google Scholar

    [34]

    Zhou J, Rossi J 2016 Nat. Rev. Drug Discovery 16 181

    [35]

    Negrier C, Shima M, Hoffman M 2019 Blood Rev. 38 100582Google Scholar

    [36]

    Jaberi N, Soleimani A, Pashirzad M, Abdeahad H, Mohammadi F, Khoshakhlagh M, Khazaei M, Ferns G A, Avan A, Hassanian S M 2018 J. Cell. Biochem. 120 4757

    [37]

    Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J 1992 Nature 355 564Google Scholar

    [38]

    Rotem D, Jayasinghe L, Salichou M, Bayley H 2012 J. Am. Chem. Soc. 134 2781Google Scholar

    [39]

    Reynaud L, Bouchet-Spinelli A, Janot J M, Buhot A, Balme S, Raillon C 2021 Anal. Chem. 93 7889Google Scholar

    [40]

    Cao M Y, Zhang L J, Tang H R, Qiu X, Li Y X 2022 Anal. Chem. 94 17405Google Scholar

    [41]

    Chou J, Shahi P, Werb Z 2014 Cell Cycle 12 3262

    [42]

    Qiu X, Dong J Y, Dai Q S, Huang M M, Li Y X 2023 Biosens. Bioelectron. 240 115594Google Scholar

    [43]

    Peinetti A S, Lake R J, Cong W, Cooper L, Wu Y, Ma Y, Pawel G T, Toimil-Molares M E, Trautmann C, Rong L, Mariñas B, Azzaroni O, Lu Y 2021 Sci. Adv. 7 eabh2848Google Scholar

    [44]

    Wu D, Wu T T, Liu Q, Yang Z C 2020 Int. J. Infect. Dis. 94 44Google Scholar

    [45]

    Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei Y Y, Yuan M L, Zhang Y L, Dai F H, Liu Y, Wang Q M, Zheng J J, Xu L, Holmes E C, Zhang Y Z 2020 Nature 579 265Google Scholar

    [46]

    Kim D, Lee J Y, Yang J S, Kim J W, Kim V N, Chang H 2020 Cell 181 914Google Scholar

    [47]

    Ma W H, Xie W Y, Tian R, Zeng X Q, Liang L Y, Hou C J, Huo D Q, Wang D Q 2023 Sens. Actuators B 377 133075Google Scholar

    [48]

    Albrecht C, Kuznetsov A S, Appert-Collin A, Dhaideh Z, Callewaert M, Bershatsky Y V, Urban A S, Bocharov E V, Bagnard D, Baud S, Blaise S, Romier-Crouzet B, Efremov R G, Dauchez M, Duca L, Gueroult M, Maurice P, Bennasroune A 2020 Front. Cell Dev. Biol. 8

    [49]

    Kwak D K, Kim J S, Lee M K, Ryu K S, Chi S W 2020 Anal. Chem. 92 14303Google Scholar

    [50]

    Zhang X, Galenkamp N S, van der Heide N J, Moreno J, Maglia G, Kjems J 2023 ACS Nano 17 9167Google Scholar

    [51]

    Thakur A K, Movileanu L 2018 Nat. Biotechnol. 37 96

    [52]

    Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O 2008 J. Am. Chem. Soc. 130 16351Google Scholar

    [53]

    Liu Y, Xuan W M, Cui Y 2010 Adv. Mater. 22 4112Google Scholar

    [54]

    Fortuna A, Alves G, Falcão A 2013 Biomed. Chromatogr. 28 27

    [55]

    Wang J, Prajapati J D, Gao F, Ying Y L, Kleinekathöfer U, Winterhalter M, Long Y T 2022 J. Am. Chem. Soc. 144 15072Google Scholar

    [56]

    Ramirez J, He F, Lebrilla C B 1998 J. Am. Chem. Soc. 120 7387Google Scholar

    [57]

    Kim B Y, Yang J, Gong M, Flachsbart B R, Shannon M A, Bohn P W, Sweedler J V 2009 Anal. Chem. 81 2715Google Scholar

    [58]

    Han C P, Hou X, Zhang H C, Guo W, Li H B, Jiang L 2011 J. Am. Chem. Soc. 133 7644Google Scholar

    [59]

    Xie G H, Tian W, Wen L P, Xiao K, Zhang Z, Liu Q, Hou G L, Li P, Tian Y, Jiang L 2015 Chem. Commun. 51 3135Google Scholar

    [60]

    Jia W D, Hu C Z, Wang Y Q, Gu Y M, Qian G, Du X Y, Wang L, Liu Y, Cao J, Zhang S Y, Yan S, Zhang P K, Ma J, Chen H Y, Huang S 2021 Nat. Commun. 12 5811Google Scholar

    [61]

    Jia W D, Hu C Z, Wang Y Q, Liu Y, Wang L Y, Zhang S Y, Zhu Q, Gu Y M, Zhang P K, Ma J, Chen H Y, Huang S 2022 ACS Nano 16 6615Google Scholar

    [62]

    Wang Y Q, Fan P P, Zhang S Y, Wang L Y, Li X Y, Jia W D, Liu Y, Wang K F, Du X Y, Zhang P K, Huang S 2022 ACS Nano 16 21356Google Scholar

    [63]

    Talaga D S, Li J 2009 J. Am. Chem. Soc. 131 9287Google Scholar

    [64]

    Firnkes M, Pedone D, Knezevic J, Döblinger M, Rant U 2010 Nano Lett. 10 2162Google Scholar

    [65]

    Sze J Y Y, Ivanov A P, Cass A E G, Edel J B 2017 Nat. Commun. 8 1552Google Scholar

    [66]

    Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndić M 2010 Nat. Nanotechnol. 5 807Google Scholar

    [67]

    Carlsen A T, Zahid O K, Ruzicka J A, Taylor E W, Hall A R 2014 Nano Lett. 14 5488Google Scholar

    [68]

    Zahid O K, Wang F, Ruzicka J A, Taylor E W, Hall A R 2016 Nano Lett. 16 2033Google Scholar

    [69]

    Ilktac A, Kalkan S, Caliskan S 2020 Int. J. Clin. Pract. 75 e13935

    [70]

    Mosquera‐Sulbaran J A, Pedreañez A, Carrero Y, Callejas D 2021 Rev. Med. Virol. 31 e2221Google Scholar

    [71]

    Tatsuoka T, Okuyama T, Takeshita E, Oi H, Noro T, Mitsui T, Yoshitomi H, Oya M 2020 Surgery Today 51 397

    [72]

    Wu J, Liang L Y, Zhang M K, Zhu R, Wang Z, Yin Y J, Yin B H, Weng T, Fang S X, Xie W Y, Wang L, Wang D Q 2022 ACS Appl. Mater. Interfaces 14 12077Google Scholar

    [73]

    Zou Z, Yang H, Yan Q, Qi P, Qing Z H, Zheng J, Xu X, Zhang L H, Feng F, Yang R H 2019 Chem. Commun. 55 6433Google Scholar

    [74]

    Saha K, Agasti S S, Kim C, Li X, Rotello V M 2012 Chem. Rev. 112 2739Google Scholar

    [75]

    Wang H, Yang R H, Yang L, Tan W H 2009 ACS Nano 3 2451Google Scholar

    [76]

    Billinge E R, Broom M, Platt M 2013 Anal. Chem. 86 1030

    [77]

    Blundell E L C J, Vogel R, Platt M 2016 Langmuir 32 1082Google Scholar

    [78]

    Hernández-Neuta I, Pereiro I, Ahlford A, Ferraro D, Zhang Q, Viovy J L, Descroix S, Nilsson M 2018 Biosens. Bioelectron. 102 531Google Scholar

    [79]

    Kühnemund M, Nilsson M 2015 Biosens. Bioelectron. 67 11Google Scholar

    [80]

    Rosen C B, Rodriguez-Larrea D, Bayley H 2014 Nat. Biotechnol. 32 179Google Scholar

    [81]

    Zhang Z H, Wang X Q, Wei X J, Zheng S W, Lenhart B J, Xu P S, Li J, Pan J, Albrecht H, Liu C 2021 Biosens. Bioelectron. 181 113134Google Scholar

    [82]

    Karhanek M, Kemp J T, Pourmand N, Davis R W, Webb C D 2005 Nano Lett. 5 403Google Scholar

    [83]

    Wang H, Tang H R, Yang C, Li Y X 2019 Anal. Chem. 91 7965Google Scholar

    [84]

    Tang H R, Wang H, Yang C, Zhao D D, Qian Y Y, Li Y X 2020 Anal. Chem. 92 3042Google Scholar

    [85]

    Zhang Z H, Li T, Sheng Y Y, Liu L, Wu H C 2018 Small 15 1804078

    [86]

    Wang X Q, Wei X J, van der Zalm M M, Zhang Z H, Subramanian N, Demers A M, Ghimenton Walters E, Hesseling A, Liu C 2023 ACS Nano 17 21093Google Scholar

    [87]

    Japrung D, Bahrami A, Nadzeyka A, Peto L, Bauerdick S, Edel J B, Albrecht T 2014 J. Phys. Chem. B 118 11605Google Scholar

    [88]

    Bell N A W, Keyser U F 2015 J. Am. Chem. Soc. 137 2035Google Scholar

    [89]

    Squires A, Atas E, Meller A 2015 Sci. Rep. 5 11643Google Scholar

    [90]

    Plesa C, Ruitenberg J W, Witteveen M J, Dekker C 2015 Nano Lett. 15 3153Google Scholar

    [91]

    Kulenkampff K, Wolf Perez A-M, Sormanni P, Habchi J, Vendruscolo M 2021 Nat. Rev. Chem. 5 277Google Scholar

    [92]

    van Steenoven I, Majbour N K, Vaikath N N, Berendse H W, van der Flier W M, van de Berg W D J, Teunissen C E, Lemstra A W, El-Agnaf O M A 2018 Movement Disorders 33 1724Google Scholar

    [93]

    Liu Y X, Wang X Y, Campolo G, Teng X Y, Ying L M, Edel J B, Ivanov A P 2023 ACS Nano 17 22999Google Scholar

    [94]

    Ivankin A, Henley R Y, Larkin J, Carson S, Toscano M L, Wanunu M 2014 ACS Nano 8 10774Google Scholar

    [95]

    Cai S, Pataillot-Meakin T, Shibakawa A, Ren R, Bevan C L, Ladame S, Ivanov A P, Edel J B 2021 Nat. Commun. 12 3515Google Scholar

    [96]

    Chandrasekaran A R, MacIsaac M, Vilcapoma J, Hansen C H, Yang D, Wong W P, Halvorsen K 2021 Nano Lett. 21 469Google Scholar

    [97]

    Koussa M A, Halvorsen K, Ward A, Wong W P 2015 Nat. Methods 12 123Google Scholar

    [98]

    Zhu J B, Tivony R, Bošković F, Pereira-Dias J, Sandler S E, Baker S, Keyser U F 2023 J. Am. Chem. Soc. 145 12115Google Scholar

    [99]

    Al-Zarah H, Serag M F, Abadi M, Habuchi S 2023 ACS Appl. Nano Mater. 6 9515Google Scholar

    [100]

    Ding T L, Yang J, Wang J, Pan V, Lu Z H, Ke Y G, Zhang C 2022 Biosens. Bioelectron. 195 113658Google Scholar

    [101]

    Kim S H, Kim K R, Ahn D R, Lee J E, Yang E G, Kim S Y 2017 ACS Nano 11 9352Google Scholar

    [102]

    Yang J, Wang J, Liu X, Chen Y M, Liang Y, Wang Q, Jiang S X, Zhang C 2023 Small 19 2303715Google Scholar

  • [1] Ge Yi-Xuan, Yu Ting-Ting, Liang Wen-Jie. Preparation of ultra-sensitive and highly specific miniature hydrogen sensors by in situ synthesis methods. Acta Physica Sinica, doi: 10.7498/aps.73.20231265
    [2] Han Tong-Wei, Li Ren, Cao Shu-Min, Zhang Xiao-Yan. Investigation of effects of functionalization on mechanical properties of penta-graphene. Acta Physica Sinica, doi: 10.7498/aps.70.20210764
    [3] Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends. Acta Physica Sinica, doi: 10.7498/aps.68.20190423
    [4] Li Bin, Zhang Guo-Feng, Jing Ming-Yong, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. Single molecule optical-probes measured power law distribution of polymer dynamics. Acta Physica Sinica, doi: 10.7498/aps.65.218201
    [5] Yuan Fei, Zhang Chuan-Biao, Zhou Xin, Li Ming. An improved algorithm for prediction of protein loop structure based on position specificity of amino acids. Acta Physica Sinica, doi: 10.7498/aps.65.158701
    [6] Tang Hai-Tong, Ao Yu-Hui, Wang Cong, Zhao Rui-Xue, Gao Zhong-Min, Meng Fan-Ling. Nanopore change law and mechanism of polyacrylonitrile based carbon fiber precursor in spinning process. Acta Physica Sinica, doi: 10.7498/aps.64.046101
    [7] Wei Xiao-Lin, Chen Yuan-Ping, Wang Ru-Zhi, Zhong Jian-Xin. Studies on electrical properties of graphene nanoribbons with pore defects. Acta Physica Sinica, doi: 10.7498/aps.62.057101
    [8] Chen Qing, Sun Min-Hua. Molecular dynamics simulation of isothermal crystallization dynamics in Cu nanocluster. Acta Physica Sinica, doi: 10.7498/aps.62.036101
    [9] Lu Nai-Yan, Yuan Bing, Yang Kai. Nonspecific adsorption of charged mesoporous nanoparticles on supported thiol/lipid hybrid bilayers. Acta Physica Sinica, doi: 10.7498/aps.62.178701
    [10] Zhu Xiao-Rui, Wang Wei-Dong, Qin Guang-Yong, Jiao Zhen. Fabrication and electrolytic conduction of single conical nanopores. Acta Physica Sinica, doi: 10.7498/aps.62.077802
    [11] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, doi: 10.7498/aps.61.068401
    [12] Cao Bing-Yang, Dong Ruo-Yu, Kong Jie, Chen Heng, Xu Yan, Yung Kai-Leung, Cai An. Experimental study of thermal conductivity of polyethylene nanowire arrays fabricated by the nanoporous template wetting technique. Acta Physica Sinica, doi: 10.7498/aps.61.046501
    [13] Chen Qing, Wang Shu-Ying, Sun Min-Hua. Molecular dynamics simulation of isothermal crystallization dynamics in Cu nanocluster. Acta Physica Sinica, doi: 10.7498/aps.61.146101
    [14] Wang Le, Liu Yang, Xu Guo-Tang, Li Xiao-Yan, Dong Qian-Min, Huang Jie, Liang Pei. First-principles study on the sensitization of small molecule adsorbed on ZnO nanowire. Acta Physica Sinica, doi: 10.7498/aps.61.063103
    [15] Tang Ming-Chun, Xiao Shao-Qiu, Deng Tian-Wei, Bai Yan-Ying, Guan Jian, Wang Bing-Zhong. Miniaturized electric resonance metamaterial. Acta Physica Sinica, doi: 10.7498/aps.59.4715
    [16] Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang, Tang Xiao-Dong. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, doi: 10.7498/aps.57.6643
    [17] Xia Cai-Juan, Fang Chang-Feng, Hu Gui-Chao, Li Dong-Mei, Liu De-Sheng, Xie Shi-Jie, Zhao Ming-Wen. Effect of side groups on the electronic transport properties of molecular devices. Acta Physica Sinica, doi: 10.7498/aps.57.3148
    [18] Xu Hai-Jun, Fu Xiao-Nan, Sun Xin-Rui, Li Xin-Jian. Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Physica Sinica, doi: 10.7498/aps.54.2352
    [19] Chen Lei-Ming, Li Pei-Gang, Fu Xiu-Li, Zhang Hai-Ying, Li L. H., Tang Wei-Hua. Fast fabrication of large-area nanopore arrays by FIB. Acta Physica Sinica, doi: 10.7498/aps.54.582
    [20] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, doi: 10.7498/aps.53.2112
Metrics
  • Abstract views:  238
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2024
  • Accepted Date:  27 February 2024
  • Available Online:  20 March 2024

/

返回文章
返回