Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of effects of functionalization on mechanical properties of penta-graphene

Han Tong-Wei Li Ren Cao Shu-Min Zhang Xiao-Yan

Citation:

Investigation of effects of functionalization on mechanical properties of penta-graphene

Han Tong-Wei, Li Ren, Cao Shu-Min, Zhang Xiao-Yan
cstr: 32037.14.aps.70.20210764
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Penta-graphene is a new two-dimensional metastable carbon allotrope composed entirely of carbon pentagons with unique electronic and mechanical properties. In this work, molecular dynamics simulations are carried out to investigate the effects of functionalization by hydrogen, epoxide or hydroxyl groups on the mechanical properties and failure mechanism of penta-graphene, as well as the effects of different functionalization coverages. The effects of functionalization on the structural transformation of free-standing penta-graphene triggered by increasing temperature have also been studied. The results indicate that each of the three functional groups considered can effectively tune the mechanical properties and the failure mechanism of penta-graphene. Both the Young's modulus and elastic limit of penta-graphene first decrease sharply and then increase slowly with the increase of the functionalization coverage, while the ultimate elastic strain increases monotonically. Like the pristine penta-graphene, partially functionalized penta-graphene still exhibits a plastic deformation failure behaviour under tensile load, which is caused by the irreversible pentagon-to-polygon structural transformation occurring during tensile loading. Temperature can trigger structural reconstruction for free-standing partially functionalized penta-graphene, and the corresponding critical transition temperature is higher than that of pristine penta-graphene. However, complete functionalization can change the deformation mechanism of penta-graphene from plastic deformation to brittle fracture. For fully functionalized penta-graphene by each of the three functional groups, the structural transformation is not observed when tensile strain is applied or environmental temperature is increased. These findings are expected to provide important guidelines for effectively tuning the mechanical properties of two-dimensional nanomaterials including penta-graphene.
      Corresponding author: Han Tong-Wei, twhan@ujs.edu.cn
    • Funds: Project supported by the Major Program of Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 17KJA130001) and Opening Fund of National Center for International Research on Structural Health Management of Critical Components (Grant No. KFJJ20-02N).
    [1]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [2]

    Yu Z G, Zhang Y W 2015 J. Appl. Phys. 118 165706Google Scholar

    [3]

    Xu W, Zhang G, Li B W 2015 J. Chem. Phys. 143 154703Google Scholar

    [4]

    Carr L D, Lusk M T 2010 Nat. Nanotechnol. 5 316Google Scholar

    [5]

    Guo B D, Liu Q A, Chen E D, Zhu H W, Fang L A, Gong J R 2010 Nano Lett. 10 4975Google Scholar

    [6]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [7]

    Han T W, Luo Y, Wang C Y 2015 Acta Mech. Solida Sin. 28 618Google Scholar

    [8]

    Berdiyorov G R, Dixit G, Madjet M E 2016 J. Phys.: Condens. Matter 28 475001Google Scholar

    [9]

    Li X Y, Zhang S H, Wang F Q, Guo Y G, Liu J, Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191Google Scholar

    [10]

    Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W, Zhang X L 2017 Comput. Mater. Sci. 137 195Google Scholar

    [11]

    Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925Google Scholar

    [12]

    Zhang Y Y, Pei Q X, Sha Z D, Zhang Y W, Gao H J 2017 Nano Res. 10 3865Google Scholar

    [13]

    Liu L Z, Zhang J F, Zhao J J, Liu F 2012 Nanoscale 4 5910Google Scholar

    [14]

    Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557Google Scholar

    [15]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898Google Scholar

    [16]

    Winczewski S, Shaheen M Y, Rybicki J 2018 Carbon 126 165Google Scholar

    [17]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [18]

    Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T 2017 FlatChem 1 65Google Scholar

    [19]

    Han T W, Cao S M, Wang X Y, Xuezi Y Y, Zhang X Y 2019 Mater. Res. Express 6 085612Google Scholar

    [20]

    Cranford S W 2016 Carbon 96 421Google Scholar

    [21]

    Han T W, Wang X Y, Zhang X Y, Scarpa F, Tang C 2021 Nanotechnology 32 275706Google Scholar

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396Google Scholar

    [23]

    Chenoweth K, van Duin A C T, Goddard W A 2008 J. Phys. Chem. A 112 1040Google Scholar

    [24]

    Le M Q 2017 Comput. Mater. Sci. 136 181Google Scholar

    [25]

    Chen M, Zhan H, Zhu Y, Wu H, Gu Y 2017 J. Phys. Chem. C 121 9642Google Scholar

    [26]

    Yoon K, Ostadhossein A, van Duin A C T 2016 Carbon 99 58Google Scholar

    [27]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [28]

    Nose S 1984 Mol. Phys. 52 255Google Scholar

    [29]

    Swope W C, ersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar

    [30]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids Struct. 45 4340Google Scholar

    [31]

    Zhao Y P 2014 Nano, Mesoscopic Mechanics (Beijing: Science Press) p 14

    [32]

    Yagmurcukardes M, Sahin H, Kang J, Torun E, Peeters F M, Senger R T 2015 J. Appl. Phys. 118 104303Google Scholar

    [33]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 045415Google Scholar

  • 图 1  五边形石墨烯及其官能化几何模型示意图 (a) 五边形石墨烯薄膜的拉伸模型; (b) 完美五边形石墨烯的2×2超晶胞; (c)完全氢化五边形石墨烯的2×2超晶胞; (d)完全环氧基化五边形石墨烯的2×2超晶胞; (e)完全羟基化五边形石墨烯的2×2超晶胞

    Figure 1.  Schematics of simulation models and atomic structures for pristine and functionalized penta-graphene. Side view and top view of (a) tensile model of pristine penta-graphene sheet, 2×2 supercell of (b) pristine penta-graphene, (c) fully hydrogenated penta-graphene, (d) fully epoxylated penta-graphene, (f) fully hydroxylated graphene.

    图 2  部分和完全官能化五边形石墨烯的拉伸应力应变曲线

    Figure 2.  Stress-strain curves of partially and fully functionalized penta-graphene.

    图 3  25%环氧基化五边形石墨烯在不同变形阶段的原子构型图 (a) ε = 0; (b) ε = 0.091; (c) ε = 0.331; (d) ε = 416

    Figure 3.  Snapshots of the atom configurations of 25% epoxylated penta-graphene at different stain: (a) ε = 0; (b) ε = 0.091; (c) ε = 0.331; (d) ε = 416.

    图 4  完全环氧基化五边形石墨烯在不同变形阶段的原子构型图 (a) ε = 0; (b) ε = 0.043; (c) ε = 0.080; (d) ε = 0.083

    Figure 4.  Snapshots of the atom configurations of fully epoxylated penta-graphene at different stain: (a) ε = 0; (b) ε = 0.043; (c) ε = 0.080; (d) ε = 0.083.

    图 5  官能化五边形石墨烯的杨氏模量, 弹性极限和极限弹性应变随官能化率的关系

    Figure 5.  Young’s modulus, elastic stress and strain of penta-graphene functionalized with different functional groups as a function of functionalization percentage.

    图 6  完美的和官能化的五边形石墨烯的势能与温度的关系曲线

    Figure 6.  Potential energy versus temperature for pristine and functionalized penta-graphene

  • [1]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [2]

    Yu Z G, Zhang Y W 2015 J. Appl. Phys. 118 165706Google Scholar

    [3]

    Xu W, Zhang G, Li B W 2015 J. Chem. Phys. 143 154703Google Scholar

    [4]

    Carr L D, Lusk M T 2010 Nat. Nanotechnol. 5 316Google Scholar

    [5]

    Guo B D, Liu Q A, Chen E D, Zhu H W, Fang L A, Gong J R 2010 Nano Lett. 10 4975Google Scholar

    [6]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [7]

    Han T W, Luo Y, Wang C Y 2015 Acta Mech. Solida Sin. 28 618Google Scholar

    [8]

    Berdiyorov G R, Dixit G, Madjet M E 2016 J. Phys.: Condens. Matter 28 475001Google Scholar

    [9]

    Li X Y, Zhang S H, Wang F Q, Guo Y G, Liu J, Wang Q 2016 Phys. Chem. Chem. Phys. 18 14191Google Scholar

    [10]

    Zhang Y Y, Pei Q X, Cheng Y, Zhang Y W, Zhang X L 2017 Comput. Mater. Sci. 137 195Google Scholar

    [11]

    Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925Google Scholar

    [12]

    Zhang Y Y, Pei Q X, Sha Z D, Zhang Y W, Gao H J 2017 Nano Res. 10 3865Google Scholar

    [13]

    Liu L Z, Zhang J F, Zhao J J, Liu F 2012 Nanoscale 4 5910Google Scholar

    [14]

    Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557Google Scholar

    [15]

    Pei Q X, Zhang Y W, Shenoy V B 2010 Carbon 48 898Google Scholar

    [16]

    Winczewski S, Shaheen M Y, Rybicki J 2018 Carbon 126 165Google Scholar

    [17]

    Erhart P, Albe K 2005 Phys. Rev. B 71 035211Google Scholar

    [18]

    Rahaman O, Mortazavi B, Dianat A, Cuniberti G, Rabczuk T 2017 FlatChem 1 65Google Scholar

    [19]

    Han T W, Cao S M, Wang X Y, Xuezi Y Y, Zhang X Y 2019 Mater. Res. Express 6 085612Google Scholar

    [20]

    Cranford S W 2016 Carbon 96 421Google Scholar

    [21]

    Han T W, Wang X Y, Zhang X Y, Scarpa F, Tang C 2021 Nanotechnology 32 275706Google Scholar

    [22]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396Google Scholar

    [23]

    Chenoweth K, van Duin A C T, Goddard W A 2008 J. Phys. Chem. A 112 1040Google Scholar

    [24]

    Le M Q 2017 Comput. Mater. Sci. 136 181Google Scholar

    [25]

    Chen M, Zhan H, Zhu Y, Wu H, Gu Y 2017 J. Phys. Chem. C 121 9642Google Scholar

    [26]

    Yoon K, Ostadhossein A, van Duin A C T 2016 Carbon 99 58Google Scholar

    [27]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [28]

    Nose S 1984 Mol. Phys. 52 255Google Scholar

    [29]

    Swope W C, ersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637Google Scholar

    [30]

    Subramaniyan A K, Sun C T 2008 Int. J. Solids Struct. 45 4340Google Scholar

    [31]

    Zhao Y P 2014 Nano, Mesoscopic Mechanics (Beijing: Science Press) p 14

    [32]

    Yagmurcukardes M, Sahin H, Kang J, Torun E, Peeters F M, Senger R T 2015 J. Appl. Phys. 118 104303Google Scholar

    [33]

    Los J H, Zakharchenko K V, Katsnelson M I, Fasolino A 2015 Phys. Rev. B 91 045415Google Scholar

Metrics
  • Abstract views:  7979
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2021
  • Accepted Date:  10 July 2021
  • Available Online:  16 August 2021
  • Published Online:  20 November 2021
  • /

    返回文章
    返回