-
Sn15Sb85 thin films with different thickness are prepared by magnetron sputtering. The evolution of Sn15Sb85 thin film from the amorphous state to the crystalline state is studied by an in-situ resistance temperature measurement system. The crystallization temperature, electrical resistance, crystallization activation energy, and data retention capacity of Sn15Sb85 thin film increase significantly with film thickness decreasing. The near infrared spectrophotometer is used to record the diffuse reflectance spectra of amorphous Sn15Sb85 film. The results show that the band gap energy increases with film thickness decreasing. The surface morphology of Sn15Sb85 film after being crystalized is observed by atomic force microscope, which shows that the thinner film has lower roughness. The analysis of X-ray diffraction indicates that the grain size becomes smaller and the crystallization may be inhibited by reducing the film thickness. T-type phase change memory cells based on Sn15Sb85 thin films with different thickness are fabricated by the CMOS technology. The electrical performances of phase change memory show that the thinner Sn15Sb85 film has a larger threshold switching voltage and smaller RESET operation voltage, which means the better thermal stability and lower power consumption. The outcomes of this work provide the guidance for designing the high-density phase change memory by reducing the size of Sn15Sb85 thin film.
-
Keywords:
- Sn15Sb85 thin film /
- thickness effect /
- thermal stability /
- power consumption
[1] Jiao F Y, Chen B, Ding K Y, Li K L, Wang L, Zeng X R, Rao F 2020 Appl. Mater. Today 20 100641Google Scholar
[2] Zhang W, Ma E 2020 Mater. Today 41 156Google Scholar
[3] 杜玲玲, 周细应, 李晓 2020 人工晶体学报 49 2398
[4] Durai S, Raj S, Manivannan A 2020 Semicond. Sci. Tech. 35 015022Google Scholar
[5] Ding K Y, Chen B, Chen Y M, Wang J Q, Shen X, Rao F 2020 NPG Asia Mater. 12 63Google Scholar
[6] Zhu X Q, Zhang R, Hu Y F, Lai T S, Zhang J H, Zou H, Song Z T 2018 Chin. Phys. Lett. 35 056803Google Scholar
[7] Hu Y F, Lai T S, Zou H, Zhu X Q 2019 Mater. Res. Expr. 6 025907
[8] 宋志昊, 张昆华, 闻明, 郭俊梅, 陈家林, 谭志龙 2020 材料导报 34 21099
[9] Guo X, Hu Y F, Chou Q Q, Lai T S, Zhang R, Zhu X Q 2018 ECS J. Solid State Sci. Techn. 7 647Google Scholar
[10] Hu Y F, Guo X, Chou Q Q, Lai T S 2018 Chinese Phys Lett. 35 096801Google Scholar
[11] Mao Y N, Chen Y M, Zhang Q, Wang R P, Shen X 2020 J Non-cryst. Solids 549 120338Google Scholar
[12] Pandey S K, Manivannan A 2021 Scripta. Mater. 192 73Google Scholar
[13] Liu R R, W P Z, He Z F, Zhai J W, Liu X Y, Lai T S 2017 Thin Solid Films 625 11Google Scholar
[14] Putero M, Coulet M V, Muller C, Baehtz C, Raoux S, Cheng H Y 2016 Appl. Phys. Lett. 108 101909
[15] Kim J H, Park J H, Ko D H 2018 Thin Solid Films. 653 173Google Scholar
[16] Zou H, Zhai L J, Hu Y F, Zhang J H, Zhu X Q, Sun Y M, Song Z T 2018 Appl. Phys. A 124 717
[17] Wu W H, Chen S Y, Zhai J W, Liu X Y, Lai T S, Song S N, Song Z T 2017 Appl. Phys. Lett. 110 181906Google Scholar
[18] Rao F, Song Z T, Ren K, Li X L, Wu L C, Xi W, Liu B 2009 Appl. Phys. Lett. 95 032105Google Scholar
[19] Wu W H, Zhao Z H, Shen B, Zhai J W, Song S N, Song Z T 2018 Nanoscale 10 7228Google Scholar
[20] You H P, Hu Y F, Zhu X Q, Zou H, Song S N, Song Z T 2018 Appl. Phys. A 124 168Google Scholar
[21] 朱小芹, 胡益丰 2020 物理学报 69 146101Google Scholar
Zhu X Q, Hu Y F 2020 Acta Phys. Sin. 69 146101Google Scholar
[22] Hu Y F, Zhu X Q, Zou H, Zheng L, Song S N, Song Z T 2017 J. Alloy Compd. 696 150Google Scholar
[23] Hu Y F, Zhai J W, Zeng H R, Song S N, Song Z T 2015 J. Appl. Phys. 117 175704Google Scholar
[24] Zou H, Hu Y F, Zhu X Q, Sun Y M, Zheng L, Sui Y X, Wu S C, Song Z T 2017 J. Mater. Sci. 52 5216Google Scholar
[25] Zhang W, Wu D Y, Hu Y F, Jiang A, Xu J J, Liu H, Bu S P, Shi R H 2016 J. Mater. Sci. -Mater. Electron. 27 13148Google Scholar
[26] Shen X, Li J J, Wang G X, Wang Z S, Lu Y G, Dai S X 2015 Vacuum 112 33Google Scholar
-
-
[1] Jiao F Y, Chen B, Ding K Y, Li K L, Wang L, Zeng X R, Rao F 2020 Appl. Mater. Today 20 100641Google Scholar
[2] Zhang W, Ma E 2020 Mater. Today 41 156Google Scholar
[3] 杜玲玲, 周细应, 李晓 2020 人工晶体学报 49 2398
[4] Durai S, Raj S, Manivannan A 2020 Semicond. Sci. Tech. 35 015022Google Scholar
[5] Ding K Y, Chen B, Chen Y M, Wang J Q, Shen X, Rao F 2020 NPG Asia Mater. 12 63Google Scholar
[6] Zhu X Q, Zhang R, Hu Y F, Lai T S, Zhang J H, Zou H, Song Z T 2018 Chin. Phys. Lett. 35 056803Google Scholar
[7] Hu Y F, Lai T S, Zou H, Zhu X Q 2019 Mater. Res. Expr. 6 025907
[8] 宋志昊, 张昆华, 闻明, 郭俊梅, 陈家林, 谭志龙 2020 材料导报 34 21099
[9] Guo X, Hu Y F, Chou Q Q, Lai T S, Zhang R, Zhu X Q 2018 ECS J. Solid State Sci. Techn. 7 647Google Scholar
[10] Hu Y F, Guo X, Chou Q Q, Lai T S 2018 Chinese Phys Lett. 35 096801Google Scholar
[11] Mao Y N, Chen Y M, Zhang Q, Wang R P, Shen X 2020 J Non-cryst. Solids 549 120338Google Scholar
[12] Pandey S K, Manivannan A 2021 Scripta. Mater. 192 73Google Scholar
[13] Liu R R, W P Z, He Z F, Zhai J W, Liu X Y, Lai T S 2017 Thin Solid Films 625 11Google Scholar
[14] Putero M, Coulet M V, Muller C, Baehtz C, Raoux S, Cheng H Y 2016 Appl. Phys. Lett. 108 101909
[15] Kim J H, Park J H, Ko D H 2018 Thin Solid Films. 653 173Google Scholar
[16] Zou H, Zhai L J, Hu Y F, Zhang J H, Zhu X Q, Sun Y M, Song Z T 2018 Appl. Phys. A 124 717
[17] Wu W H, Chen S Y, Zhai J W, Liu X Y, Lai T S, Song S N, Song Z T 2017 Appl. Phys. Lett. 110 181906Google Scholar
[18] Rao F, Song Z T, Ren K, Li X L, Wu L C, Xi W, Liu B 2009 Appl. Phys. Lett. 95 032105Google Scholar
[19] Wu W H, Zhao Z H, Shen B, Zhai J W, Song S N, Song Z T 2018 Nanoscale 10 7228Google Scholar
[20] You H P, Hu Y F, Zhu X Q, Zou H, Song S N, Song Z T 2018 Appl. Phys. A 124 168Google Scholar
[21] 朱小芹, 胡益丰 2020 物理学报 69 146101Google Scholar
Zhu X Q, Hu Y F 2020 Acta Phys. Sin. 69 146101Google Scholar
[22] Hu Y F, Zhu X Q, Zou H, Zheng L, Song S N, Song Z T 2017 J. Alloy Compd. 696 150Google Scholar
[23] Hu Y F, Zhai J W, Zeng H R, Song S N, Song Z T 2015 J. Appl. Phys. 117 175704Google Scholar
[24] Zou H, Hu Y F, Zhu X Q, Sun Y M, Zheng L, Sui Y X, Wu S C, Song Z T 2017 J. Mater. Sci. 52 5216Google Scholar
[25] Zhang W, Wu D Y, Hu Y F, Jiang A, Xu J J, Liu H, Bu S P, Shi R H 2016 J. Mater. Sci. -Mater. Electron. 27 13148Google Scholar
[26] Shen X, Li J J, Wang G X, Wang Z S, Lu Y G, Dai S X 2015 Vacuum 112 33Google Scholar
Catalog
Metrics
- Abstract views: 4508
- PDF Downloads: 67
- Cited By: 0