-
Double-porosity poroelastic model takes into account the effect of mesoscopic flow induced by rock heterogeneity on dispersion and attenuation of elastic waves, and has obtained good application results in the quantitative explanation of seismic data in heterogeneous reservoirs. Wavefield simulation based on double-porosity model not only helps visualize the propagation characteristics of the elastic waves but also lays the foundation for seismic imaging. In this work, we perform wavefield simulation and analysis based on the Santos-Rayleigh model which incorporates mesoscopic and global flow in a partially-saturated double-porosity medium. Specifically, the mesoscopic flow mechanism is represented with a Zener viscoelastic model. The comparison shows that the Zener model can accurately capture the propagation characteristics of fast P-wave, but fails to describe the attenuation characteristics of slow P3 wave in the low-frequency band. It implies that Zener viscoelastic model and slow wave modes follow different mechanisms. Then the staggered grid finite-difference method is used to simulate wave propagation in a double-porosity medium, and the stiff problem is solved with a time-splitting algorithm, which can significantly improve computational efficiency. Based on the above methods, the correctness of our algorithm is verified with derived analytical solution for a P-wave source in a uniform partially saturated poroelastic medium. Analytical and numerical solutions are in good agreement and mean error is 0.33%. We provide some examples of wavefield snapshots and seismograms in homogeneous and layered heterogeneous media at seismic and ultrasonic frequencies. The simulation results demonstrate the strong attenuation of fast P-wave and no change of S-wave in the seismic band due to mesoscopic flow mechanism, which is consistent with the theoretical prediction of double-porosity model. Moreover, the energy of fast P-wave is concentrated in solid phase while slow waves are stronger in fluid phase. This work contributes to the understanding of broadband elastic wave propagation in a heterogeneous partially saturated porous medium and can be applied to the reservoir imaging with broadband geophysical data.
-
Keywords:
- double-porosity media /
- finite difference /
- dispersion and attenuation
[1] Biot M A 1956 J. Acoust. Soc. Am. 28 179Google Scholar
[2] Santos J E, Corberó J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428Google Scholar
[3] Liu L, Zhang X, Wang X 2022 J. Theor. Comp. Acout. 30 2150002Google Scholar
[4] Berryman J G, Wang H F 2000 Int. J. Rock Mech. Min. 37 63Google Scholar
[5] Huang J D, Yang D H, He X J, Chang Y F 2023 Geophysics 88 T121Google Scholar
[6] Pride S R, Berryman J G, Harris J M 2004 J. Geophys. Res. 109 B01201Google Scholar
[7] Zheng P, Ding B Y, Sun X T 2017 Int. J. Rock Mech. Min. 91 104Google Scholar
[8] Ba J, Carcione J M, Nie J X 2011 J. Geophys. Res. 116 B06202Google Scholar
[9] Sun W T, Ba J, Carcione J M 2016 Geophys. J. Int. 205 22Google Scholar
[10] Ba J, Xu W H, Fu L Y, Carcione J M, Zhang L 2017 J. Geophys. Res. Solid Earth 122 1949Google Scholar
[11] 石志奇, 何晓, 刘琳, 陈德华, 王秀明 2023 物理学报 72 069101Google Scholar
Shi Z Q, He X, Liu L, Chen D H, Wang X M 2023 Acta Phys. Sin. 72 069101Google Scholar
[12] Shi Z Q, He X, Chen D H, Wang X M 2024 Geophys. J. Int. 236 1172Google Scholar
[13] Ba J, Nie J X, Cao H, Yang H Z 2008 Geophys. Res. Lett. 35 L04303Google Scholar
[14] Liu X, Greenhalgh S, Zhou B 2009 Geophys. J. Int. 178 375Google Scholar
[15] Liu X, Greenhalgh S 2019 Geophysics 84 WA59Google Scholar
[16] Wang E, Carcione J M, Ba J 2019 Geophysics 84 WA11Google Scholar
[17] Carcione J M 2015 Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (Amsterdam Boston: Elsevier
[18] Jiang Y C, Gao Y X, Cheng Q L, Song Y J 2023 Geophys. J. Int. 235 970Google Scholar
[19] Virieux J 1986 Geophysics. 51 889Google Scholar
[20] Wenzlau F, Müller T M 2009 Geophysics 74 T55Google Scholar
[21] Guan W, Hu H 2011 Commun. Comput. Phys. 10 695Google Scholar
[22] 孔丽云, 王一博, 杨慧珠 2013 物理学报 62 139101Google Scholar
Kong L Y, Wang Y B, Yang H Z 2013 Acta Phys. Sin. 62 139101Google Scholar
[23] 刘财, 罗玉钦 2023 地球物理学报 66 3840Google Scholar
Liu C, Luo Y Q 2023 Chin. J. Geophys. 66 3840Google Scholar
[24] Zhao H, Wang X 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 723Google Scholar
[25] Deng W B, Fu L Y, Wang Z W, Hou W T, Han T C 2023 Geophys. J. Int. 235 1218Google Scholar
[26] Carcione J M, Quiroga-Goode G 1995 J. Comput. Acoust. 3 261Google Scholar
[27] Komatitsch D, Martin R 2007 Geophysics 72 SM155Google Scholar
-
图 4 S2 = 0.9, ${\eta }_{\mathrm{{f}}}^{(1)}={\eta }_{\mathrm{{f}}}^{(2)}=0 $时数值解与解析解比较 (a)固相; (b)非润湿相; (c)润湿相
Figure 4. Comparison of analytical and numerical solutions when S2 = 0.9, ${\eta }_{\mathrm{{f}}}^{(1)}={\eta }_{\mathrm{{f}}}^{(2)}=0 $: (a) Solid phase; (b) non-wetting phase; (c) wetting-phase.
表 1 部分饱和双重孔隙介质物性参数表
Table 1. Physical parameters of partially saturated double-porosity media.
符号 参数 层1 层2 Ks 基质体积模量/GPa 36 40 ρs 基质密度/(kg·m–3) 2650 2800 Km 骨架体积模量/GPa 6.21 9.5 μm 骨架剪切模量/GPa 4.55 6.2 ϕ 孔隙度 0.33 0.2 κ 渗透率/m2 4.93×10–12 2.96×10–12 ${K}_{\mathrm{{f}}}^{(1)} $ 润湿相流体体积模量/GPa 2.223 $ {\rho}_{\mathrm{{f}}}^{(1)}$ 润湿相流体密度/(kg·m–3) 1000 ${\eta}_{\mathrm{{f}}}^{(1)} $ 润湿相流体黏度/(Pa·s) 0.001 ${K}_{\mathrm{{f}}}^{(2)} $ 非润湿相流体体积模量/GPa 0.022 ${\rho}_{\mathrm{{f}}}^{(2)} $ 非润湿相流体密度/(kg·m–3) 100 ${\eta}_{\mathrm{{f}}}^{(2)} $ 非润湿相流体黏度/(Pa·s) 1.5×10–5 -
[1] Biot M A 1956 J. Acoust. Soc. Am. 28 179Google Scholar
[2] Santos J E, Corberó J M, Douglas J 1990 J. Acoust. Soc. Am. 87 1428Google Scholar
[3] Liu L, Zhang X, Wang X 2022 J. Theor. Comp. Acout. 30 2150002Google Scholar
[4] Berryman J G, Wang H F 2000 Int. J. Rock Mech. Min. 37 63Google Scholar
[5] Huang J D, Yang D H, He X J, Chang Y F 2023 Geophysics 88 T121Google Scholar
[6] Pride S R, Berryman J G, Harris J M 2004 J. Geophys. Res. 109 B01201Google Scholar
[7] Zheng P, Ding B Y, Sun X T 2017 Int. J. Rock Mech. Min. 91 104Google Scholar
[8] Ba J, Carcione J M, Nie J X 2011 J. Geophys. Res. 116 B06202Google Scholar
[9] Sun W T, Ba J, Carcione J M 2016 Geophys. J. Int. 205 22Google Scholar
[10] Ba J, Xu W H, Fu L Y, Carcione J M, Zhang L 2017 J. Geophys. Res. Solid Earth 122 1949Google Scholar
[11] 石志奇, 何晓, 刘琳, 陈德华, 王秀明 2023 物理学报 72 069101Google Scholar
Shi Z Q, He X, Liu L, Chen D H, Wang X M 2023 Acta Phys. Sin. 72 069101Google Scholar
[12] Shi Z Q, He X, Chen D H, Wang X M 2024 Geophys. J. Int. 236 1172Google Scholar
[13] Ba J, Nie J X, Cao H, Yang H Z 2008 Geophys. Res. Lett. 35 L04303Google Scholar
[14] Liu X, Greenhalgh S, Zhou B 2009 Geophys. J. Int. 178 375Google Scholar
[15] Liu X, Greenhalgh S 2019 Geophysics 84 WA59Google Scholar
[16] Wang E, Carcione J M, Ba J 2019 Geophysics 84 WA11Google Scholar
[17] Carcione J M 2015 Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (Amsterdam Boston: Elsevier
[18] Jiang Y C, Gao Y X, Cheng Q L, Song Y J 2023 Geophys. J. Int. 235 970Google Scholar
[19] Virieux J 1986 Geophysics. 51 889Google Scholar
[20] Wenzlau F, Müller T M 2009 Geophysics 74 T55Google Scholar
[21] Guan W, Hu H 2011 Commun. Comput. Phys. 10 695Google Scholar
[22] 孔丽云, 王一博, 杨慧珠 2013 物理学报 62 139101Google Scholar
Kong L Y, Wang Y B, Yang H Z 2013 Acta Phys. Sin. 62 139101Google Scholar
[23] 刘财, 罗玉钦 2023 地球物理学报 66 3840Google Scholar
Liu C, Luo Y Q 2023 Chin. J. Geophys. 66 3840Google Scholar
[24] Zhao H, Wang X 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 723Google Scholar
[25] Deng W B, Fu L Y, Wang Z W, Hou W T, Han T C 2023 Geophys. J. Int. 235 1218Google Scholar
[26] Carcione J M, Quiroga-Goode G 1995 J. Comput. Acoust. 3 261Google Scholar
[27] Komatitsch D, Martin R 2007 Geophysics 72 SM155Google Scholar
-
10-20240227Suppl.pdf
Catalog
Metrics
- Abstract views: 1665
- PDF Downloads: 70
- Cited By: 0