-
Control of shock wave/boundary layer interaction (SWBLI) is of high practical importance for supersonic aircraft drag reducing. Lots of flow control strategies including passive and active control techniques have been put forward to minimize negative effect of SWBLI.Plasma aerodynamic control technique is considered as a potential one due to its flexibility in manipulating the supersonic flow. The goal of this research is to investigate the control effect of the novel actuator called plasma synthetic jet on the SWBLI.The effect of counter-flow plasma synthetic jet actuator on the SWBLI is investigated experimentally in this paper. The experiments are conducted in a supersonic wind tunnel at Mach number Ma=3.1. The test model is a blunt body with a plasma synthetic jet actuator installed inside its head which is used to create aerodynamic perturbations, and with a conical compression ramp in the rear, enabling the creation of SWBLI flow configuration. The plasma synthetic jet actuator is designed to inject pulsed hot gas by arc discharge into a small cavity in the direction perpendicular to the normal shock wave induced by the blunt body. The schlieren method is used for flow measurement and the flow characteristics are studied according to a sequence of schlieren images (1024512 pixel resolution) captured by a high speed charge-couple device camera with a framing rate of 58 kHz, triggered externally, and an exposure time of 1 s. Additionally, the mechanism of this control strategy on the SWBLI induced by the ramp is revealed by using the numerical method.The characteristics of the plasma synthetic jet in quiescent air are firstly studied. The results show a sudden reduction of averaged jet velocity under the resistance of the air. In addition, some small-scale flow structures in the jet are observed which may enhance the turbulence in the upstream boundary layer. The flow topology of interaction modified by actuation with frequencies of f=1 kHz and f=3 kHz are respectively analyzed. It is shown that by using this type of control strategy, the attached shock is locally degraded with the attachment point moving upward. The separation bubble is suppressed, hence making the separation shock move downstream. In addition, an extensive impact effect is exerted to the interaction region by actuation at f=1 kHz because more hot gas is produced by the actuator. Therefore, the actuator is found to be capable of significantly mitigating the negative effects induced by the SWBLI. The numerical work focuses on the interaction between the jet and the flow after the normal shock. The results show that large-scale vortex is induced by the interaction which increases turbulence and accelerates the flow near the wall during its moving downstream and dissipation, demonstrating turbulence enhancement in the boundary layer and a variation of upstream flow characteristics are the key factors for separation reduction and shock wave mitigation.
-
Keywords:
- shock wave/boundary layer interaction /
- plasma synthetic jet /
- numerical simulation /
- flow control
[1] Lu F K, Li Q, Liu C 2012 Prog. Aerosp. Sci. 53 30
[2] Gaitonde D V 2015 Prog. Aerosp. Sci. 72 80
[3] Zhang Q H, Zhu T, Yi S H, Wu A P 2016 Chin. Phys. B 25 054701
[4] Yan Y, Chen C, Lu P, Liu C 2013 Aerosp. Sci. Technol. 30 226
[5] Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B 2015 Shock Waves 25 521
[6] Verma S B, Manisankar C 2012 AIAA J. 50 2753
[7] Titchener N, Babinsky H 2013 AIAA J. 51 1221
[8] Kornilov V I 2015 Prog. Aerosp. Sci. 76 1
[9] Belinger A, Naude N, Cambronne J P, Caruana D 2014 J. Phys. D 47 345202
[10] Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 物理学报 61 060509]
[11] Falempin F, Firsov A, Yarantsev D A, Goldfeld M A, Sergey K T, Leonov B 2015 Exp. Fluids 56 1
[12] Su C B, Li Y H, Wang J, Cao J, Li Y H 2010 Chin. J. Aeronaut. 23 22
[13] Ekaterinaris J A 2009 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22-25, 2009 p4151
[14] Houpt A, Gordeyev S, Juliano T, Leonov S 2016 54th AIAA Aerospace Sciences Meeting San Diego, California, January 4-8, 2016 p2160
[15] Webb N, Clifford C, Samimy M 2013 Exp. Fluids 54 1545
[16] Sasoh A, Iwakawa A, Osuka T, Majima R 2014 7th AIAA Flow Control Conference Atlanta, GA June 1620, 2014 p2369
[17] Narayanaswamy V, Shin J, Clemens N T, Raja L L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p285
[18] Narayanaswamy V, Clemens N T, Raja L L 2010 48th AIAA Aerospace Sciences Meeting Orlando, Florida, January 4-7, 2010 p1089
[19] Jin D, Li Y H, Jia M, Song H M Cui W, Sun Q, Li F Y 2013 Plasma Sci. Technol. 15 1034
[20] Zong H H, Wu Y, Jia M, Song H M 2016 J. Phys. D: Appl. Phys. 49 025504
[21] Zong H H, Cui W, Wu Y, Zhang Z Z, Liang H, Jia M, Li Y H 2015 Sens. Actuators A 222 114
[22] Zhang Z B, Wu Y, Jia M, Zong H H, Cui W, Liang H, Li Y H 2015 Sens. Actuators A 235 71
[23] Greene B R, Clemens N T, Magari P, Micka D 2015 Shock Waves 25 495
[24] Yang G, Yao Y, Fang J, Gan T, Lu L 2016 Chin. J. Aeronaut. 29 617
[25] Emerick T, Ali M Y, Foster C, Alvi F S, Popkin S 2014 Exp. Fluids 55 1858
[26] Wang L 2014 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [王林 2014 博士学位论文(长沙: 国防科学技术大学)]
[27] Tamba T, Pham H S, Shoda T, Iwakawa A, Sasoh A 2015 Phys. Fluids 27 091704
[28] Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 543
[29] Haack S J, Taylor T, Emhoff J, Cybyk B 2010 5th Flow Control Conference Chicago, Illinois, June 28-July 1, 2010 p4979
[30] Jin D, Cui W, Li Y, Li F Y, Jia M, Sun Q, Zhang Z B 2015 Chin. J. Aeronaut. 28 66
-
[1] Lu F K, Li Q, Liu C 2012 Prog. Aerosp. Sci. 53 30
[2] Gaitonde D V 2015 Prog. Aerosp. Sci. 72 80
[3] Zhang Q H, Zhu T, Yi S H, Wu A P 2016 Chin. Phys. B 25 054701
[4] Yan Y, Chen C, Lu P, Liu C 2013 Aerosp. Sci. Technol. 30 226
[5] Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B 2015 Shock Waves 25 521
[6] Verma S B, Manisankar C 2012 AIAA J. 50 2753
[7] Titchener N, Babinsky H 2013 AIAA J. 51 1221
[8] Kornilov V I 2015 Prog. Aerosp. Sci. 76 1
[9] Belinger A, Naude N, Cambronne J P, Caruana D 2014 J. Phys. D 47 345202
[10] Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 物理学报 61 060509]
[11] Falempin F, Firsov A, Yarantsev D A, Goldfeld M A, Sergey K T, Leonov B 2015 Exp. Fluids 56 1
[12] Su C B, Li Y H, Wang J, Cao J, Li Y H 2010 Chin. J. Aeronaut. 23 22
[13] Ekaterinaris J A 2009 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22-25, 2009 p4151
[14] Houpt A, Gordeyev S, Juliano T, Leonov S 2016 54th AIAA Aerospace Sciences Meeting San Diego, California, January 4-8, 2016 p2160
[15] Webb N, Clifford C, Samimy M 2013 Exp. Fluids 54 1545
[16] Sasoh A, Iwakawa A, Osuka T, Majima R 2014 7th AIAA Flow Control Conference Atlanta, GA June 1620, 2014 p2369
[17] Narayanaswamy V, Shin J, Clemens N T, Raja L L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p285
[18] Narayanaswamy V, Clemens N T, Raja L L 2010 48th AIAA Aerospace Sciences Meeting Orlando, Florida, January 4-7, 2010 p1089
[19] Jin D, Li Y H, Jia M, Song H M Cui W, Sun Q, Li F Y 2013 Plasma Sci. Technol. 15 1034
[20] Zong H H, Wu Y, Jia M, Song H M 2016 J. Phys. D: Appl. Phys. 49 025504
[21] Zong H H, Cui W, Wu Y, Zhang Z Z, Liang H, Jia M, Li Y H 2015 Sens. Actuators A 222 114
[22] Zhang Z B, Wu Y, Jia M, Zong H H, Cui W, Liang H, Li Y H 2015 Sens. Actuators A 235 71
[23] Greene B R, Clemens N T, Magari P, Micka D 2015 Shock Waves 25 495
[24] Yang G, Yao Y, Fang J, Gan T, Lu L 2016 Chin. J. Aeronaut. 29 617
[25] Emerick T, Ali M Y, Foster C, Alvi F S, Popkin S 2014 Exp. Fluids 55 1858
[26] Wang L 2014 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [王林 2014 博士学位论文(长沙: 国防科学技术大学)]
[27] Tamba T, Pham H S, Shoda T, Iwakawa A, Sasoh A 2015 Phys. Fluids 27 091704
[28] Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 543
[29] Haack S J, Taylor T, Emhoff J, Cybyk B 2010 5th Flow Control Conference Chicago, Illinois, June 28-July 1, 2010 p4979
[30] Jin D, Cui W, Li Y, Li F Y, Jia M, Sun Q, Zhang Z B 2015 Chin. J. Aeronaut. 28 66
Catalog
Metrics
- Abstract views: 6422
- PDF Downloads: 369
- Cited By: 0