Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Response of the shock wave/boundary layer interaction to the plasma synthetic jet

Wang Hong-Yu Li Jun Jin Di Dai Hui Gan Tian Wu Yun

Citation:

Response of the shock wave/boundary layer interaction to the plasma synthetic jet

Wang Hong-Yu, Li Jun, Jin Di, Dai Hui, Gan Tian, Wu Yun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Control of shock wave/boundary layer interaction (SWBLI) is of high practical importance for supersonic aircraft drag reducing. Lots of flow control strategies including passive and active control techniques have been put forward to minimize negative effect of SWBLI.Plasma aerodynamic control technique is considered as a potential one due to its flexibility in manipulating the supersonic flow. The goal of this research is to investigate the control effect of the novel actuator called plasma synthetic jet on the SWBLI.The effect of counter-flow plasma synthetic jet actuator on the SWBLI is investigated experimentally in this paper. The experiments are conducted in a supersonic wind tunnel at Mach number Ma=3.1. The test model is a blunt body with a plasma synthetic jet actuator installed inside its head which is used to create aerodynamic perturbations, and with a conical compression ramp in the rear, enabling the creation of SWBLI flow configuration. The plasma synthetic jet actuator is designed to inject pulsed hot gas by arc discharge into a small cavity in the direction perpendicular to the normal shock wave induced by the blunt body. The schlieren method is used for flow measurement and the flow characteristics are studied according to a sequence of schlieren images (1024512 pixel resolution) captured by a high speed charge-couple device camera with a framing rate of 58 kHz, triggered externally, and an exposure time of 1 s. Additionally, the mechanism of this control strategy on the SWBLI induced by the ramp is revealed by using the numerical method.The characteristics of the plasma synthetic jet in quiescent air are firstly studied. The results show a sudden reduction of averaged jet velocity under the resistance of the air. In addition, some small-scale flow structures in the jet are observed which may enhance the turbulence in the upstream boundary layer. The flow topology of interaction modified by actuation with frequencies of f=1 kHz and f=3 kHz are respectively analyzed. It is shown that by using this type of control strategy, the attached shock is locally degraded with the attachment point moving upward. The separation bubble is suppressed, hence making the separation shock move downstream. In addition, an extensive impact effect is exerted to the interaction region by actuation at f=1 kHz because more hot gas is produced by the actuator. Therefore, the actuator is found to be capable of significantly mitigating the negative effects induced by the SWBLI. The numerical work focuses on the interaction between the jet and the flow after the normal shock. The results show that large-scale vortex is induced by the interaction which increases turbulence and accelerates the flow near the wall during its moving downstream and dissipation, demonstrating turbulence enhancement in the boundary layer and a variation of upstream flow characteristics are the key factors for separation reduction and shock wave mitigation.
      Corresponding author: Li Jun, kltbwhy@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51522606, 51507187, 51276197, 51407197, 11472306).
    [1]

    Lu F K, Li Q, Liu C 2012 Prog. Aerosp. Sci. 53 30

    [2]

    Gaitonde D V 2015 Prog. Aerosp. Sci. 72 80

    [3]

    Zhang Q H, Zhu T, Yi S H, Wu A P 2016 Chin. Phys. B 25 054701

    [4]

    Yan Y, Chen C, Lu P, Liu C 2013 Aerosp. Sci. Technol. 30 226

    [5]

    Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B 2015 Shock Waves 25 521

    [6]

    Verma S B, Manisankar C 2012 AIAA J. 50 2753

    [7]

    Titchener N, Babinsky H 2013 AIAA J. 51 1221

    [8]

    Kornilov V I 2015 Prog. Aerosp. Sci. 76 1

    [9]

    Belinger A, Naude N, Cambronne J P, Caruana D 2014 J. Phys. D 47 345202

    [10]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 物理学报 61 060509]

    [11]

    Falempin F, Firsov A, Yarantsev D A, Goldfeld M A, Sergey K T, Leonov B 2015 Exp. Fluids 56 1

    [12]

    Su C B, Li Y H, Wang J, Cao J, Li Y H 2010 Chin. J. Aeronaut. 23 22

    [13]

    Ekaterinaris J A 2009 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22-25, 2009 p4151

    [14]

    Houpt A, Gordeyev S, Juliano T, Leonov S 2016 54th AIAA Aerospace Sciences Meeting San Diego, California, January 4-8, 2016 p2160

    [15]

    Webb N, Clifford C, Samimy M 2013 Exp. Fluids 54 1545

    [16]

    Sasoh A, Iwakawa A, Osuka T, Majima R 2014 7th AIAA Flow Control Conference Atlanta, GA June 1620, 2014 p2369

    [17]

    Narayanaswamy V, Shin J, Clemens N T, Raja L L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p285

    [18]

    Narayanaswamy V, Clemens N T, Raja L L 2010 48th AIAA Aerospace Sciences Meeting Orlando, Florida, January 4-7, 2010 p1089

    [19]

    Jin D, Li Y H, Jia M, Song H M Cui W, Sun Q, Li F Y 2013 Plasma Sci. Technol. 15 1034

    [20]

    Zong H H, Wu Y, Jia M, Song H M 2016 J. Phys. D: Appl. Phys. 49 025504

    [21]

    Zong H H, Cui W, Wu Y, Zhang Z Z, Liang H, Jia M, Li Y H 2015 Sens. Actuators A 222 114

    [22]

    Zhang Z B, Wu Y, Jia M, Zong H H, Cui W, Liang H, Li Y H 2015 Sens. Actuators A 235 71

    [23]

    Greene B R, Clemens N T, Magari P, Micka D 2015 Shock Waves 25 495

    [24]

    Yang G, Yao Y, Fang J, Gan T, Lu L 2016 Chin. J. Aeronaut. 29 617

    [25]

    Emerick T, Ali M Y, Foster C, Alvi F S, Popkin S 2014 Exp. Fluids 55 1858

    [26]

    Wang L 2014 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [王林 2014 博士学位论文(长沙: 国防科学技术大学)]

    [27]

    Tamba T, Pham H S, Shoda T, Iwakawa A, Sasoh A 2015 Phys. Fluids 27 091704

    [28]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 543

    [29]

    Haack S J, Taylor T, Emhoff J, Cybyk B 2010 5th Flow Control Conference Chicago, Illinois, June 28-July 1, 2010 p4979

    [30]

    Jin D, Cui W, Li Y, Li F Y, Jia M, Sun Q, Zhang Z B 2015 Chin. J. Aeronaut. 28 66

  • [1]

    Lu F K, Li Q, Liu C 2012 Prog. Aerosp. Sci. 53 30

    [2]

    Gaitonde D V 2015 Prog. Aerosp. Sci. 72 80

    [3]

    Zhang Q H, Zhu T, Yi S H, Wu A P 2016 Chin. Phys. B 25 054701

    [4]

    Yan Y, Chen C, Lu P, Liu C 2013 Aerosp. Sci. Technol. 30 226

    [5]

    Estruch-Samper D, Vanstone L, Hillier R, Ganapathisubramani B 2015 Shock Waves 25 521

    [6]

    Verma S B, Manisankar C 2012 AIAA J. 50 2753

    [7]

    Titchener N, Babinsky H 2013 AIAA J. 51 1221

    [8]

    Kornilov V I 2015 Prog. Aerosp. Sci. 76 1

    [9]

    Belinger A, Naude N, Cambronne J P, Caruana D 2014 J. Phys. D 47 345202

    [10]

    Cheng Y F, Nie W S, Li G Q 2012 Acta Phys. Sin. 61 060509 (in Chinese) [程钰锋, 聂万胜, 李国强 2012 物理学报 61 060509]

    [11]

    Falempin F, Firsov A, Yarantsev D A, Goldfeld M A, Sergey K T, Leonov B 2015 Exp. Fluids 56 1

    [12]

    Su C B, Li Y H, Wang J, Cao J, Li Y H 2010 Chin. J. Aeronaut. 23 22

    [13]

    Ekaterinaris J A 2009 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22-25, 2009 p4151

    [14]

    Houpt A, Gordeyev S, Juliano T, Leonov S 2016 54th AIAA Aerospace Sciences Meeting San Diego, California, January 4-8, 2016 p2160

    [15]

    Webb N, Clifford C, Samimy M 2013 Exp. Fluids 54 1545

    [16]

    Sasoh A, Iwakawa A, Osuka T, Majima R 2014 7th AIAA Flow Control Conference Atlanta, GA June 1620, 2014 p2369

    [17]

    Narayanaswamy V, Shin J, Clemens N T, Raja L L 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7-10, 2008 p285

    [18]

    Narayanaswamy V, Clemens N T, Raja L L 2010 48th AIAA Aerospace Sciences Meeting Orlando, Florida, January 4-7, 2010 p1089

    [19]

    Jin D, Li Y H, Jia M, Song H M Cui W, Sun Q, Li F Y 2013 Plasma Sci. Technol. 15 1034

    [20]

    Zong H H, Wu Y, Jia M, Song H M 2016 J. Phys. D: Appl. Phys. 49 025504

    [21]

    Zong H H, Cui W, Wu Y, Zhang Z Z, Liang H, Jia M, Li Y H 2015 Sens. Actuators A 222 114

    [22]

    Zhang Z B, Wu Y, Jia M, Zong H H, Cui W, Liang H, Li Y H 2015 Sens. Actuators A 235 71

    [23]

    Greene B R, Clemens N T, Magari P, Micka D 2015 Shock Waves 25 495

    [24]

    Yang G, Yao Y, Fang J, Gan T, Lu L 2016 Chin. J. Aeronaut. 29 617

    [25]

    Emerick T, Ali M Y, Foster C, Alvi F S, Popkin S 2014 Exp. Fluids 55 1858

    [26]

    Wang L 2014 Ph. D. Dissertation (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [王林 2014 博士学位论文(长沙: 国防科学技术大学)]

    [27]

    Tamba T, Pham H S, Shoda T, Iwakawa A, Sasoh A 2015 Phys. Fluids 27 091704

    [28]

    Narayanaswamy V, Raja L L, Clemens N T 2012 Phys. Fluids 24 543

    [29]

    Haack S J, Taylor T, Emhoff J, Cybyk B 2010 5th Flow Control Conference Chicago, Illinois, June 28-July 1, 2010 p4979

    [30]

    Jin D, Cui W, Li Y, Li F Y, Jia M, Sun Q, Zhang Z B 2015 Chin. J. Aeronaut. 28 66

  • [1] Yang Meng-Qi, Wu Fu-Yuan, Chen Zhi-Bo, Zhang Yi-Xiang, Chen Yi, Zhang Jin-Chuan, Chen Zhi-Zhen, Fang Zhi-Fan, Rafael Ramis, Zhang Jie. Two-dimensional radiation hydrodynamic simulations of high-speed head-on collisions between high-density plasma jets. Acta Physica Sinica, 2022, 71(22): 225202. doi: 10.7498/aps.71.20220948
    [2] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] Niu Zhong-Guo, Xu Xiang-Hui, Wang Jian-Feng, Jiang Jia-Li, Liang Hua. Experiment on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [4] Experimental study on longitudinal aerodynamic characteristics of flying wing model with plasma flow control. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211425
    [5] Wu Jin-Fang, Chen Zhao-Quan, Zhang Ming, Zhang Huang, Zhang San-Yang, Feng De-Ren, Zhou Yu-Ming. Measurement of time-varying electron density of air spark shock wave plasma jet by the method of microwave Rayleigh scattering. Acta Physica Sinica, 2020, 69(7): 075202. doi: 10.7498/aps.69.20191909
    [6] Tang Bing-Liang, Guo Shan-Guang, Song Guo-Zheng, Luo Yan-Hao. Experimental study on supersonic plate boundary layer transition under pulsed arc plasma excitation control. Acta Physica Sinica, 2020, 69(15): 155201. doi: 10.7498/aps.69.20200216
    [7] Wang Peng, Shen Chi-Bing. Mixing enhancement for supersonic mixing layer by using plasma synthetic jet. Acta Physica Sinica, 2019, 68(17): 174701. doi: 10.7498/aps.68.20190683
    [8] Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao. Linear stability of supersonic boundary layer with synthetic cold/hot jet control. Acta Physica Sinica, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [9] Liu Meng-Ke, Zhang Hui, Fan Bao-Chun, Han Yang, Gui Ming-Yue. The mechanism investigation of two-degree-of-freedom vortex-induced vibration with electro-magnetic forces. Acta Physica Sinica, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [10] Zhang Xin, Huang Yong, Wang Wan-Bo, Tang Kun, Li Hua-Xing. Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator. Acta Physica Sinica, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [11] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [12] Quan Peng-Cheng, Yi Shi-He, Wu Yu, Zhu Yang-Zhu, Chen Zhi. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave. Acta Physica Sinica, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [13] Wang Lin, Xia Zhi-Xun, Luo Zhen-Bing, Zhou Yan, Zhang Yu. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator. Acta Physica Sinica, 2014, 63(19): 194702. doi: 10.7498/aps.63.194702
    [14] Yin Ji-Fu, You Yun-Xiang, Li Wei, Hu Tian-Qun. Numerical analysis for the characteristics of flow control around a circular cylinder with a turbulent boundary layer separation using the electromagnetic force. Acta Physica Sinica, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [15] Wang Lin, Luo Zhen-Bing, Xia Zhi-Xun, Liu Bing. Energy efficiency and performance characteristics of plasma synthetic jet. Acta Physica Sinica, 2013, 62(12): 125207. doi: 10.7498/aps.62.125207
    [16] Guan Ren-Guo, Zhao Zhan-Yong, Huang Hong-Qian, Lian Chao, Chao Run-Ze, Liu Chun-Ming. Theoretical study on boundary distributions and flow-metal heat transfer during melt treatment by cooling sloping plate. Acta Physica Sinica, 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [17] Wang Jian, Li Ying-Hong, Cheng Bang-Qin, Su Chang-Bing, Song Hui-Min, Wu Yun. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation. Acta Physica Sinica, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [18] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [19] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [20] Wang Mao-quan. THE EFFECT OF FLOWING PLASMA IN TOKAMAK ON TEARTING MODES. Acta Physica Sinica, 1986, 35(9): 1227-1232. doi: 10.7498/aps.35.1227
Metrics
  • Abstract views:  6422
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2016
  • Accepted Date:  26 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回