搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究

管仁国 赵占勇 黄红乾 连超 钞润泽 刘春明

引用本文:
Citation:

冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究

管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明

Theoretical study on boundary distributions and flow-metal heat transfer during melt treatment by cooling sloping plate

Guan Ren-Guo, Zhao Zhan-Yong, Huang Hong-Qian, Lian Chao, Chao Run-Ze, Liu Chun-Ming
PDF
导出引用
  • 针对倾斜板熔体处理晶粒细化与半固态成形原理,研究了倾斜板熔体处理过程边界层分布, 建立了熔体传热和冷却速率的计算模型.计算结果表明,随着斜板倾角和熔体初始流动速度的增大, 熔体在倾斜板上从层流向紊流的转变时间减少;温度边界层厚度随着熔体初始流动速度的增加而减小, 斜板倾角对温度边界层厚度的影响较小;温度边界层厚度和速度边界层厚度都随熔体流动距离的增加而增大, 在层流区,温度边界层厚度远大于速度边界层厚度,而在紊流区,温度边界层厚度与速度边界层厚度重合; 倾斜板上熔体冷却速率与熔体厚度成反比,初始流速小于1 m/s时,熔体的冷却速率沿着倾斜板长度方向 逐渐增大,初始流速为1 m/s时,熔体的冷却速率沿倾斜板长度方向基本不变,当初始流速大于1 m/s时, 熔体冷却速率沿倾斜板长度方向逐渐减小;倾斜板上熔体冷却速率在100-1000 K/s之间, 属于亚快速凝固范畴.
    In this paper, according to the principle of grain refining and semisolid forming by cooling sloping plate process, the distributions of boundary layers during melt treatment by the sloping plate are studied, and mathematic models of heat transfer and cooling rate are established. Calculation results show that the change time from laminar flow to turbulent flow decreases with the increases of the sloping angle and initial flow velocity. The thickness of temperature boundary layer decreases with the increases of initial flow velocity. The effect of the sloping angle on the thickness of temperature boundary is small. The boundary layer thicknesses of the both temperature and velocity increase with the increase of the flow distance gradually. In the laminar flow region, the thickness of the temperature boundary layer is much bigger than that of the velocity boundary layer, while the two layers coincide with each other in the turbulent flow zone. The melt cooling rate on the sloping plate and the melt thickness have an inverse proportion relationship between each other. When the initial flow velocity is lower than 1 m/s the cooling rate increases along the sloping plate gradually. While the initial flow velocity is 1 m/s, the cooling rate dose not change approximately. However, when the initial flow velocity is larger than 1m/s the cooling rate decreases along the sloping plate gradually. The melt cooling rate on the cooling sloping plate is between 100 K/s and 1000 K/s, which belongs to meta-rapid solidification scope.
    • 基金项目: 国家优秀青年科学基金(批准号: 51222405); 国家自然科学基金重点项目(批准号: 51034002);国家自然科学基金(批准号: 50974038); 霍英东基金会青年教师基金(批准号: 132002)和国家重点基础研究发展计划(批准号: 2011CB610405)资助的课题.
    • Funds: Project supported by the National Science Foundation for Outstanding Young Scholars of China (Grant No. 51222405), the National Natural Science Foundation of China (Grant Nos. 51034002, 50974038), the Fok Ying Tong Education Foundation (Grant No. 132002), and the National Basic Research Program of China (Grant No. 2011CB610405).
    [1]

    Kaufmann H, Mundl A, Uggowitzer P J, Potzinger R, Ishibashi N 2002 Die Cast. Eng. 46 16

    [2]

    Haga T, Saito M, Kumai S, Watari H 2009 Adv. Mater. Res. 97-101 1057

    [3]

    Haga T, Tkahshi K, Ikawaand M, Watari H 2004 J. Mater. Process. Technol. 153-154 42

    [4]

    Kapranos P, Haga T, Bertoli E, Pola A, Azpilgain Z, Hurtado I 2008 Diffus. Def. Data Pt. B 141-143 115

    [5]

    Grimmig T, Ovcharov A, Afrath C, Bunck M, Buhrig-Polaczek A 2006 Diffus. Def. Data Pt. B 116-117 484

    [6]

    Babaghorbani P, Salarfar S, Nili-Ahmadabadi M 2006 Diffus. Def. Data Pt. B 116-117 205

    [7]

    Xing S M, Zeng D B, Hu H Q, Zhai Q J, Ma J, Li Y M 2000 Foundry 48 449 (in Chinese) [邢书明, 曾大本, 胡汉起, 翟启杰, 马静, 李亚敏 2000 铸造 48 449]

    [8]

    Jiang Y H, Dai C Q, Zhou R 2004 Special Casting and Nonferrous Alloys 6 23 (in Chinese) [蒋业华, 戴长泉, 周荣 2004 特种铸造及有色合金 6 23]

    [9]

    Cardoso Legoretta E, Atkinson H V, Jones H 2008 J. Mater. Sci. 43 5448

    [10]

    Yan X L, Ran Z 2009 Chin. Phys. B 18 4360

    [11]

    Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin. 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 物理学报 59 6331]

    [12]

    Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) pp4-224 (in Chinese) [杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第4-224页]

    [13]

    Le Q Z, Cui J Z 2005 The Basic Principles of Transmission (Beijing: Metallurgical Industry Press) pp47-105 (in Chinese) [乐启炽, 崔建忠 2005 传输过程基本原理 (北京: 冶金工业出版社) 第47-105页]

    [14]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [15]

    Chen M W, Wang Z D, Sun R J 2007 Acta Phys. Sin. 56 1819 (in Chinese) [陈明文, 王自东, 孙仁济 2007 物理学报 56 1819]

    [16]

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353 (in Chinese) [翟薇, 王楠, 魏炳波 2007 物理学报 56 2353]

    [17]

    Li Z Q, Wang W L, Zhai W, Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese) [李志强, 王伟丽, 翟薇, 魏炳波 2011 物理学报 60 108101]

    [18]

    Ruhl T, Spahn P, Hellmann G P 2003 Polymer 44 7625

  • [1]

    Kaufmann H, Mundl A, Uggowitzer P J, Potzinger R, Ishibashi N 2002 Die Cast. Eng. 46 16

    [2]

    Haga T, Saito M, Kumai S, Watari H 2009 Adv. Mater. Res. 97-101 1057

    [3]

    Haga T, Tkahshi K, Ikawaand M, Watari H 2004 J. Mater. Process. Technol. 153-154 42

    [4]

    Kapranos P, Haga T, Bertoli E, Pola A, Azpilgain Z, Hurtado I 2008 Diffus. Def. Data Pt. B 141-143 115

    [5]

    Grimmig T, Ovcharov A, Afrath C, Bunck M, Buhrig-Polaczek A 2006 Diffus. Def. Data Pt. B 116-117 484

    [6]

    Babaghorbani P, Salarfar S, Nili-Ahmadabadi M 2006 Diffus. Def. Data Pt. B 116-117 205

    [7]

    Xing S M, Zeng D B, Hu H Q, Zhai Q J, Ma J, Li Y M 2000 Foundry 48 449 (in Chinese) [邢书明, 曾大本, 胡汉起, 翟启杰, 马静, 李亚敏 2000 铸造 48 449]

    [8]

    Jiang Y H, Dai C Q, Zhou R 2004 Special Casting and Nonferrous Alloys 6 23 (in Chinese) [蒋业华, 戴长泉, 周荣 2004 特种铸造及有色合金 6 23]

    [9]

    Cardoso Legoretta E, Atkinson H V, Jones H 2008 J. Mater. Sci. 43 5448

    [10]

    Yan X L, Ran Z 2009 Chin. Phys. B 18 4360

    [11]

    Du C, Xu M Y, Mi J C 2010 Acta Phys. Sin. 59 6331 (in Chinese) [杜诚, 徐敏义, 米建春 2010 物理学报 59 6331]

    [12]

    Yang S M, Tao W Q 2006 Heat Transfer (Beijing: Higher Education Press) pp4-224 (in Chinese) [杨世铭, 陶文铨 2006 传热学 (北京: 高等教育出版社) 第4-224页]

    [13]

    Le Q Z, Cui J Z 2005 The Basic Principles of Transmission (Beijing: Metallurgical Industry Press) pp47-105 (in Chinese) [乐启炽, 崔建忠 2005 传输过程基本原理 (北京: 冶金工业出版社) 第47-105页]

    [14]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [15]

    Chen M W, Wang Z D, Sun R J 2007 Acta Phys. Sin. 56 1819 (in Chinese) [陈明文, 王自东, 孙仁济 2007 物理学报 56 1819]

    [16]

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353 (in Chinese) [翟薇, 王楠, 魏炳波 2007 物理学报 56 2353]

    [17]

    Li Z Q, Wang W L, Zhai W, Wei B B 2011 Acta Phys. Sin. 60 108101 (in Chinese) [李志强, 王伟丽, 翟薇, 魏炳波 2011 物理学报 60 108101]

    [18]

    Ruhl T, Spahn P, Hellmann G P 2003 Polymer 44 7625

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响. 物理学报, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 杨林洁, 张丽丽, 江鸿翔, 何杰, 赵九洲. 微量元素La和Al-5Ti-1B复合细化Al-Cu机理. 物理学报, 2023, 72(8): 086401. doi: 10.7498/aps.72.20222334
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响. 物理学报, 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [5] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响. 物理学报, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [6] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用. 物理学报, 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [7] 边文花, 代富平, 王伟丽, 赵宇龙. 急冷条件下NiAl-Mo三元共晶合金的组织形成机制. 物理学报, 2013, 62(4): 048102. doi: 10.7498/aps.62.048102
    [8] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析. 物理学报, 2012, 61(12): 124701. doi: 10.7498/aps.61.124701
    [9] 郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安. 冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响. 物理学报, 2012, 61(24): 246102. doi: 10.7498/aps.61.246102
    [10] 李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成. 初始温度和冷却速率对金属团簇凝固行为的影响. 物理学报, 2011, 60(9): 093601. doi: 10.7498/aps.60.093601
    [11] 王浩, 刘国权, 岳景朝, 栾军华, 秦湘阁. MacPherson-Srolovitz晶粒长大速率方程的仿真验证. 物理学报, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [12] 刘贵立. Mg合金晶粒细化机理的电子理论研究. 物理学报, 2009, 58(5): 3319-3323. doi: 10.7498/aps.58.3319
    [13] 刘贵立. Mg-Zr合金微观组织电子结构研究. 物理学报, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [14] 易学华, 刘让苏, 田泽安, 侯兆阳, 王 鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55(10): 5386-5393. doi: 10.7498/aps.55.5386
    [15] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 大块非晶临界冷却速率的非等温转变计算模型. 物理学报, 2006, 55(4): 1953-1958. doi: 10.7498/aps.55.1953
    [16] 张国英, 刘春明, 张 辉. 钢铁材料组织超细化机理的电子理论研究. 物理学报, 2005, 54(2): 875-879. doi: 10.7498/aps.54.875
    [17] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究. 物理学报, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [18] 戴子高, 陆埮. 奇异星的冷却. 物理学报, 1994, 43(2): 198-204. doi: 10.7498/aps.43.198
    [19] 龚新高. 固态镓的电子结构. 物理学报, 1993, 42(4): 617-625. doi: 10.7498/aps.42.617
    [20] 李鲠颖, 王东生, 邬学文. 固态核磁共振半整数四极体系中心跃迁对梳状脉冲的响应. 物理学报, 1988, 37(6): 1018-1024. doi: 10.7498/aps.37.1018
计量
  • 文章访问数:  5544
  • PDF下载量:  634
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-03
  • 修回日期:  2012-04-06
  • 刊出日期:  2012-10-05

/

返回文章
返回