搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响

郑乃超 刘海蓉 刘让苏 梁永超 莫云飞 周群益 田泽安

引用本文:
Citation:

冷速对液态合金Ca50Zn50快速凝固过程中微观结构演变的影响

郑乃超, 刘海蓉, 刘让苏, 梁永超, 莫云飞, 周群益, 田泽安

Effects of cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy

Zheng Nai-Chao, Liu Hai-Rong, Liu Rang-Su, Liang Yong-Chao, Mo Yun-Fei, Zhou Qun-Yi, Tian Ze-An
PDF
导出引用
  • 采用分子动力学方法对六种不同冷速对原子尺寸相差较大的液态合金Ca50Zn50凝固过程中微观结构演变的影响进行了模拟研究, 并采用双体分布函数﹑Honeycutt-Andersen (HA)键型指数法、原子团类型指数法(CTIM-2)﹑可视化等方法进行了深入分析, 结果表明: 系统存在一个临界冷速, 介于和5 1011 K/s与11011 K/s之间, 在临界冷速以上(如11014 K/s, 11013 K/s, 11012 K/s 和51011 K/s)时,系统形成以1551, 1541, 1431键型或二十面体基本原子团(12 0 12 0 0 0)等为主体的非晶态结构; 在临界冷速以下时, 系统形成以1441和1661键型或bcc基本原子团(14 6 0 8 0 0)为主体(含有少量的hcp(12 0 0 0 6 6)和fcc(12 0 0 0 12 0)基本原子团)的部分晶态结构. 在非晶形成的冷速范围内, 其总双体分布函数的第一峰明显分裂成与近邻分别为Zn-Zn, Ca-Zn, Ca-Ca相对应的三个次峰; 且随着冷速的下降, 同类原子近邻的次峰峰值升高、异类原子近邻的次峰峰值下降; Zn原子容易偏聚, 随着冷速降低, 二十面体的数量增多, 非晶态结构也越稳定. 在晶态形成的冷速范围内, Zn原子已大量偏聚形成大块bcc晶态结构, Ca原子也部分形成hcp和fcc晶态结构.
    A simulation study is performed on the effects of six different cooling rates on microstructural evolution during solidification process of liquid Ca50Zn50 alloy with larger atomic size difference by using the molecular dynamics method. The pair distribution function, Honeycutt-Andersen (HA) bond-type index method, cluster-type index method (CTIM-2) and three-dimensional visualization method are adopted to deeply analyze the microstructural evolution. The results show that there is a critical cooling rate (in a range of 11012 and 51011 K/s) for forming amorphous or crystal structure. When the cooling rate, such as 11014 K/s, 11013 K/s, 11012 K/s and 51011 K/s, is above the critical cooling rate, the amorphous structures are formed mainly to be the 1551, 1541 and 1431 bond-types or the icosahedron basic clustr (12 0 12 0 0 0); while the cooling rate is under the critical cooling rate, such as at 11012 K/s, the partial crystal structures are formed mainly to be the 1441 and 1661 bond-types or the bcc clusters (14 6 0 8 0 0) (containing part of hcp (12 0 0 0 6 6) and fcc (12 0 0 0 12 0) basic crystal clusters) in the system. In the cooling rate range of forming amorphous structure, the first peak of the pair distribution function g(r) is split obviously into three secondary peaks corresponding to the nearest neighbor as Zn-Zn, Ca-Zn and Ca-Ca, respectively, and with the decrease of cooling rate, the secondary peak formed by the like atoms is inereased and the secondary peak formed by unlike atoms is reduced. With the decrease of cooling rate, the Zn atoms can be easily segregated to form the larger clusters; the lower the cooling rate, the bigger the number of basic icosahedrons formed in the system, and the amorphous system is more stable. In the cooling rate range of forming crystal structure, a great number of Zn atoms are segregated to form the bulk bcc crystal structures and part of Ca atoms are segregated to form some hcp and fcc crystal clusters.
    • 基金项目: 国家自然科学基金(批准号: 50831003, 50571037, 51102090)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50831003, 50571037, 51102090).
    [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [2]

    Texler M M, hadhani N N 2010 Prog. Mater. Sci. 55 759

    [3]

    Basu J, Ranganathan S 2003 Sadhana 28 783

    [4]

    Hirata A, Guan P f, FujitaT, Hirotsu Y, Inoue A, Yavari A R, Chen M W 2011 Nat. Mater. 10 28

    [5]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [6]

    Cheng Y Q Ma E Sheng HW 2009 Phys. Rev. Lett. 102 245501

    [7]

    Liu C S, Xia J C, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506

    [8]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P J 2008 Phys. Chem. A 112 12326

    [9]

    Hou Z Y, Liu R S, Li C S, Zhou Q Y, Zheng C X 2005 Acta Phys. Sin. 54 7523 (in Chinese) [侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星 2005 物理学报 54 7523]

    [10]

    LinY, Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys.-Chim. Sin. 24 250 (in Chinese) [林 艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]

    [11]

    Pei Q X, Lu C, Fu M W 2004 J. Phys.: Condens. Matter 16 4203

    [12]

    Wang L, Bian X F, Li H 2001 Mater. Lett. 51 7

    [13]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [14]

    Hao S G, Kramer M J, Wang C Z, Ho K M, Nandi S, Kreyssig A, Goldman A I 2009 Phys. Rev. B 79 104206

    [15]

    Liu X J, Chen G L, Hui X, Lu Z P 2008 Appl. Phys. Lett. 93 011911

    [16]

    Wang S, Lai S K 1980 J. Phys. F: Met. Phys. 10 2717

    [17]

    Li D H, Li X R, Wang S 1986 J. Phys. F: Met. Phys. 16 309

    [18]

    Hafner J, Tegze M 1989 J. Phys.: Condens. Matter 1 8277

    [19]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [20]

    Dai X D, Li J H, Guo H B, Liu B X 2007 J. Appl. Phys. 101 063512

    [21]

    Honeycutt J D, Andemen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids. 355 541

    [23]

    Fang H Z, Hui X, Chen G L, Liu Z K 2008 Phys. Lett. A 372 5831

    [24]

    Gao T H, Liu R S, Zhou LL, Tian Z A, Xie Q 2009 Acta Phys. Chim. Sin. 25(10) 2093 (in Chinese) [高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉 2009 物理化学学报 25(10) 2093]

    [25]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [26]

    Liu R S, Dong K J, Liu F X, Zheng C X, Liu H R, Li J Y 2004 Sci. China Ser. G 34 549 (in Chinese) [刘让苏, 董科军, 刘凤翔, 郑采星, 刘海蓉, 李基永 2004 中国科学G辑 34 549]

    [27]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys.: Condens. Matter. 19 196103

    [28]

    Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3743

    [29]

    Peng P, Li G F, Zheng C X, Han S C, Liu R S 2006 Sci. China Ser. E 36 975 (in Chinese) [彭平, 李贵发, 郑采星, 韩绍昌, 刘让苏 2006 中国科学E辑 36 975]

    [30]

    Zheng C X, Liu R S, Dong K J, Lu X Y, Peng P, Liu H R, Xu Z Y, Xie Q 2002 J. Atom. Mol. Phys. 19 59 (in Chinese) [郑采星, 刘让苏, 董科军, 卢小勇, 彭平, 刘海蓉, 徐仲榆, 谢泉 2002 原子与分子物理学报 19 59]

    [31]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [32]

    Liu Z Y 1984 Acta Metall. Sin. 20(1) B9 (in Chinese) [刘志毅 1984 金属学报 20(1) B9]

  • [1]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [2]

    Texler M M, hadhani N N 2010 Prog. Mater. Sci. 55 759

    [3]

    Basu J, Ranganathan S 2003 Sadhana 28 783

    [4]

    Hirata A, Guan P f, FujitaT, Hirotsu Y, Inoue A, Yavari A R, Chen M W 2011 Nat. Mater. 10 28

    [5]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419

    [6]

    Cheng Y Q Ma E Sheng HW 2009 Phys. Rev. Lett. 102 245501

    [7]

    Liu C S, Xia J C, Zhu Z G, Sun D Y 2001 J. Chem. Phys. 114 7506

    [8]

    Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P J 2008 Phys. Chem. A 112 12326

    [9]

    Hou Z Y, Liu R S, Li C S, Zhou Q Y, Zheng C X 2005 Acta Phys. Sin. 54 7523 (in Chinese) [侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星 2005 物理学报 54 7523]

    [10]

    LinY, Liu R S, Tian Z A, Hou Z Y, Zhou L L, Yu Y B 2008 Acta Phys.-Chim. Sin. 24 250 (in Chinese) [林 艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚斌 2008 物理化学学报 24 250]

    [11]

    Pei Q X, Lu C, Fu M W 2004 J. Phys.: Condens. Matter 16 4203

    [12]

    Wang L, Bian X F, Li H 2001 Mater. Lett. 51 7

    [13]

    Kazanc S 2006 Comput. Mater. Sci. 38 405

    [14]

    Hao S G, Kramer M J, Wang C Z, Ho K M, Nandi S, Kreyssig A, Goldman A I 2009 Phys. Rev. B 79 104206

    [15]

    Liu X J, Chen G L, Hui X, Lu Z P 2008 Appl. Phys. Lett. 93 011911

    [16]

    Wang S, Lai S K 1980 J. Phys. F: Met. Phys. 10 2717

    [17]

    Li D H, Li X R, Wang S 1986 J. Phys. F: Met. Phys. 16 309

    [18]

    Hafner J, Tegze M 1989 J. Phys.: Condens. Matter 1 8277

    [19]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [20]

    Dai X D, Li J H, Guo H B, Liu B X 2007 J. Appl. Phys. 101 063512

    [21]

    Honeycutt J D, Andemen H C 1987 J. Phys. Chem. 91 4950

    [22]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids. 355 541

    [23]

    Fang H Z, Hui X, Chen G L, Liu Z K 2008 Phys. Lett. A 372 5831

    [24]

    Gao T H, Liu R S, Zhou LL, Tian Z A, Xie Q 2009 Acta Phys. Chim. Sin. 25(10) 2093 (in Chinese) [高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉 2009 物理化学学报 25(10) 2093]

    [25]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [26]

    Liu R S, Dong K J, Liu F X, Zheng C X, Liu H R, Li J Y 2004 Sci. China Ser. G 34 549 (in Chinese) [刘让苏, 董科军, 刘凤翔, 郑采星, 刘海蓉, 李基永 2004 中国科学G辑 34 549]

    [27]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys.: Condens. Matter. 19 196103

    [28]

    Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A 2007 Chin. Phys. 16 3743

    [29]

    Peng P, Li G F, Zheng C X, Han S C, Liu R S 2006 Sci. China Ser. E 36 975 (in Chinese) [彭平, 李贵发, 郑采星, 韩绍昌, 刘让苏 2006 中国科学E辑 36 975]

    [30]

    Zheng C X, Liu R S, Dong K J, Lu X Y, Peng P, Liu H R, Xu Z Y, Xie Q 2002 J. Atom. Mol. Phys. 19 59 (in Chinese) [郑采星, 刘让苏, 董科军, 卢小勇, 彭平, 刘海蓉, 徐仲榆, 谢泉 2002 原子与分子物理学报 19 59]

    [31]

    Peng H L, Li M Z, Wang W H 2011 Phys. Rev. Lett. 106 135503

    [32]

    Liu Z Y 1984 Acta Metall. Sin. 20(1) B9 (in Chinese) [刘志毅 1984 金属学报 20(1) B9]

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [6] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [9] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [10] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [11] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [12] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [13] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [14] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [15] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [16] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [17] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [18] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
    [19] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
    [20] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
计量
  • 文章访问数:  5629
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-06
  • 修回日期:  2012-08-15
  • 刊出日期:  2012-12-05

/

返回文章
返回