-
Experimental investigations of supersonic laminar/turbulent flow over a compression ramp are carried out in a Mach 3.0 wind tunnel, the angles of ramp are 25 degrees and 28 degrees. Fine structures of holistic flow field and local regions are visualized via nanoparticle-tracer based planar laser scattering (NPLS) technique, some typical flow structures such as boundary layer, shear layer, separation shock, recirculation zone and reattachment shock are visible clearly, and the wall pressure coefficient of laminar flow is measured. The angle of separation shock and reattachment shock, the development of boundary layer after reattachment are measured by time-averaged flow field structures. The analyses of time-relevant NPLS images reveal the spatio temporal evolution characteristics of flow field. The experimental results indicate that when the ramp angle is 25 degrees, a typical separation appearing in the supersonic laminar flow with boundary layer increases and is converted into turbulence quickly, at the same time, a shock is induced by developing boundary layer; K-H vortexes, shear layer and compression waves arise in the flow field. But the supersonic turbulent flow does not show separation, and the turbulent boundary layer always adhers to the wall. When the ramp angle is 28 degrees, the range of recirculation zone expanded obviously in supersonic laminar flow which is separated further, induces shock and separation shock moves upstream, reattachment shock moves downstream. Therefore the structures of separated region is complicated. By comparison with laminar flow, the range of recirculation zone in supersonic turbulent flow is obviously small, boundary layer increases slowly, and there are not any induced shock, K-H vortexes, compression waves in the flow field. The structures of separated region is simple, but the strength of separation shock is much stronger.
-
Keywords:
- compression ramp /
- laminar flow /
- turbulent flow /
- flow structrures
[1] Pan H L, Ma H D, Wang Q 2008 Chin. J. Computat. Phys. 25 549 (in Chinese) [潘宏禄, 马汉东, 王强 2008 计算物理 25 549]
[2] Wang S F, Xu Z Y 1997 Exp. Meas. Fluid Mech. 11 23 (in Chinese) [王世芬, 徐朝仪 1997 流体力学实验与测量 11 23]
[3] Li S X, Chen Y K 2001 Proceedings of the 4th National Symposium on Flow Visualization 2001 p127
[4] Cassel K W, Ruban A I, Walker J D A 1995 J. Fluid Mech. 300 265
[5] Loginov M S, Adams N A, Zheltovodov A A 2006 J. Fluid Mech. 565 135
[6] Gieseking D A, Edwards J R, Choi J I 2011 AIAA Paper 2011-5541
[7] Settles G S, Fitzpatrick T J, Bogdonoff S M 1979 AIAA J. 17 579
[8] Verma S B 2003 Meas. Sci. Technol. 14 989
[9] Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 1995-2195
[10] Zheltovodov A A 2006 AIAA paper 2006-0496
[11] Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, July 2010 p29
[12] Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640
[13] Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]
[14] Zhao Y X, Yi S H, He L, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297
[15] He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489
[16] Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584
[17] Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702
[18] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]
[19] Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701
[20] He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704
-
[1] Pan H L, Ma H D, Wang Q 2008 Chin. J. Computat. Phys. 25 549 (in Chinese) [潘宏禄, 马汉东, 王强 2008 计算物理 25 549]
[2] Wang S F, Xu Z Y 1997 Exp. Meas. Fluid Mech. 11 23 (in Chinese) [王世芬, 徐朝仪 1997 流体力学实验与测量 11 23]
[3] Li S X, Chen Y K 2001 Proceedings of the 4th National Symposium on Flow Visualization 2001 p127
[4] Cassel K W, Ruban A I, Walker J D A 1995 J. Fluid Mech. 300 265
[5] Loginov M S, Adams N A, Zheltovodov A A 2006 J. Fluid Mech. 565 135
[6] Gieseking D A, Edwards J R, Choi J I 2011 AIAA Paper 2011-5541
[7] Settles G S, Fitzpatrick T J, Bogdonoff S M 1979 AIAA J. 17 579
[8] Verma S B 2003 Meas. Sci. Technol. 14 989
[9] Chan S C, Clemens N T, Dolling D S 1995 AIAA Paper 1995-2195
[10] Zheltovodov A A 2006 AIAA paper 2006-0496
[11] Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, July 2010 p29
[12] Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640
[13] Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]
[14] Zhao Y X, Yi S H, He L, Cheng Z Y 2007 Chin. Sci. Bull. 52 1297
[15] He L, Yi S H, Zhao Y X, Tian L F, Chen Z 2011 Chin. Sci. Bull. 56 489
[16] Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584
[17] Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702
[18] Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J 2013 Acta Phys. Sin. 62 084219 (in Chinese) [朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 2013 物理学报 62 084219]
[19] Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701
[20] He L, Yi S H, Tian L F, Chen Z, Zhu Y Z 2013 Chin. Phys. B 22 24704
Catalog
Metrics
- Abstract views: 8884
- PDF Downloads: 17644
- Cited By: 0