Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of adaptively adjusting dissipation for the simulation of separated flow

Li Hao Liu Wei Wang Sheng-Ye

Citation:

A method of adaptively adjusting dissipation for the simulation of separated flow

Li Hao, Liu Wei, Wang Sheng-Ye
PDF
HTML
Get Citation
  • Separate flow is a typical complex turbulent phenomenon. The full development of small-scaled structures is of great importance for accurate numerical simulation. However, these small-scaled structures can be easily damped by the inherent dissipation of numerical method. Therefore, based on the 5th-order dissipative compact scheme (DCS), we propose an adaptive dissipative compact scheme (ADCS), which can adjust the numerical dissipation with self-adaptive capability by incorporating a flow related adjusting parameter. Combining with the delay detached eddy simulation (DDES), the ADCS can reduce the influence of numerical dissipation in LES region to enhance the ability to discern small-scaled structures, and restore the normal dissipation level in the RANS region to keep numerical stability. In the process of numerical simulation, firstly, the approximate dispersion relation (ADR) is obtained, it shows that the ADCS method can effectively reduce the influence of dissipation in the high wave number region, without contaminating the dispersive performance, which is conducive to enhancing the resolution of turbulent structures. Secondly, the advection of vortical structure is simulated. Compared with DCS, the ADCS can reach the theoretical accuracy in an efficient way and acquire more advanced resolution of vortical structure even on a relatively coarse mesh scale, which proves that the ADCS reduces the negative influence of dissipation on vortical structure. The third case is the decay of isotropic turbulence. The energy spectral curves stay close to the reference before cut-off number, showing that more small-scaled structures can be distinguished by the ADCS method, and most of the vortical dominated regions are solved at a near-minimum level. The forth case is the plate channel turbulent flow. Both of DCS method and ADCS method give acceptable results. The ADCS method is performed with optimal dissipation in the near-wall region and reduces the dissipative level in the vortex dominated region, and it is also exhibited that the ADCS method can maintain the stability for flow with high gradient and avoid divergence. Finally, the sub-critical Re = 3900circular cylinder is simulated, and the fully separate flow is developed in the wake. The turbulent fluctuation near the wall is sensitive to the effect of numerical dissipation. The contour of flow field shows that the ADCS method obtains more small-scale structures. As for the pressure coefficient and mean velocity, the ADCS method shows an acceptable accuracy. Considering the Reynolds stress profile, which can be easily affected by the dissipation, the ADCS exhibits more accurate results than the traditional DCS method. Generally, the ADCS method can reduce the influence of dissipation and is beneficial to acquiring more accurate results in separate flow.
      Corresponding author: Li Hao, 583259351@qq.com
    [1]

    Cummingsa R M, Forsytheb J R, Mortonb S A 2003 Prog. Aerosp. Sci 39 369Google Scholar

    [2]

    Tucker P 2016 Appl. Math. Comput. 272 582

    [3]

    王光学, 王圣业, 葛明明, 邓小刚 2018 物理学报 67 194701Google Scholar

    Wang G X, Wang S Y, Ge M M, Deng X G 2018 Acta Phys. Sin. 67 194701Google Scholar

    [4]

    葛明明, 王圣业, 王光学, 邓小刚 2019 物理学报 68 204702Google Scholar

    Ge M M, Wang S Y, Wang G X, Deng X G 2019 Acta Phys. Sin. 68 204702Google Scholar

    [5]

    Travin A, Shur M, Strelets M, Spalart P R 2002 Adv. LES Complex. Flow 65 239

    [6]

    Jiang G S 1996 J. Comput. Phys. 126 202Google Scholar

    [7]

    Henrick A K, Aslam T D, Powers J M 2005 J. Comput. Phys. 207 542Google Scholar

    [8]

    Borges R, Carmona M, Costa B, Don W S 2008 J. Comput. Phys. 227 3191Google Scholar

    [9]

    Martín M P, Taylor E M, Wu M, Weirs V G 2006 J. Comput. Phys. 220 270Google Scholar

    [10]

    Hu X Y, Wang Q, Adams N A 2010 J. Comput. Phys. 229 8952Google Scholar

    [11]

    Wong M L, Lele S K 2017 J. Comput. Phys. 339 179Google Scholar

    [12]

    Adams N A, Shariff K 1996 J. Comput. Phys. 127 27Google Scholar

    [13]

    Pirozzoli S 2002 J. Comput. Phys. 178 81Google Scholar

    [14]

    Shahbazi K, Nathan A, Oscar P B, Jan S H 2011 J. Comput. Phys. 230 8779Google Scholar

    [15]

    Meitz H L, Fasel H F 2000 J. Comput. Phys. 157 371Google Scholar

    [16]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [17]

    Deng X, Shen C 1996 AIAA 27th Fluid Dynamics Conference, New Orleans, USA, June 17–20, 1996

    [18]

    Chaouat, Bruno 2017 Flow Turbul. Combust. 99 279Google Scholar

    [19]

    Xiao Z, Fu S 2009 Acta Mech. Sin. 25 471Google Scholar

    [20]

    Mary I, Sagaut P 2002 AIAA 40 1139Google Scholar

    [21]

    Anderson N, Eriksson L E, Davidson L 2005 AIAA 43 1899Google Scholar

    [22]

    Bui T T 2000 Comput. Fluids 29 877Google Scholar

    [23]

    Qin N, Xia H 2008 Proc. Inst. Mech. Eng. I 222 373

    [24]

    Yoon S, Barnhardt M, Candler G 48th AIAA Aerospace Science Meeting, Orlando, USA, January 4–7, 2010 p1573

    [25]

    Mockett C 2009 Ph. D. Dissertation (Berlin: Technische Universitat Berlin)

    [26]

    Tajallipour N, Babaee Owlam B, Paraschivoiu M 2009 J. Aircraft 46 915Google Scholar

    [27]

    Xiao Z, Jian L, Huang J, Song F 2012 AIAA 50 1119Google Scholar

    [28]

    Spalart P R, Jou W H, Strelets M, Allmaras S R 1997 Adv. In DNS/LES (Columbus: Greyden Press) pp137–149

    [29]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 8–11, 2001 pA01-16694

    [30]

    Spalart P R, Deck S, Shur M L, Squires K D, Strelets M K, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181Google Scholar

    [31]

    Pirozzoli S 2006 J. Comput. Phys. 219 489Google Scholar

    [32]

    Wang Z J, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H T 2013 Int. J. Numer. Methods Fluids 72 811Google Scholar

    [33]

    Kroll N, Bieler H, Deconinck H, Couaillier V, Ven H v d, Sorensen K 2010 ADIGMA A European Initiative on the Development of Adaptive Higher-order Variational Methods for Aerospace Applications (Berlin: Springer) pp1–10

    [34]

    Comte-Bellot G, Corrsin S 1971 J. Fluid. Mech. 48 273Google Scholar

    [35]

    Bunge U, Mockett C, Thiele F 2007 Aerosp. Sci. Technol. 11 376Google Scholar

    [36]

    Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) pp264–288

    [37]

    Kravchenko, P M 2000 Phys. Fluids 12 403Google Scholar

    [38]

    Parnaudeau P, Carlier J, Heitz D, Lamballais E 2008 Phys. Fluids 20 261

  • 图 1  耗散色散特性分析 (a) 耗散特性; (b) 色散特性

    Figure 1.  Analysis of dissipation and dispersion: (a) Dissipation; (b) dispersion

    图 2  $ L_2 $误差变化曲线 (a)随网格尺度$ h $; (b)随CPU 时间

    Figure 2.  The curve of $ L_2 $ error (a) vs. mesh scale $ h $; (b) vs. CPU time

    图 3  $ 64^2 $网格下涡结构等值线图 (a) DCS; (b) ADCS

    Figure 3.  Vorticity magnitude contour of $ 64^2 $ grid: (a) DCS; (b) ADCS

    图 4  $ 128^2 $网格下涡结构等值线图 (a) DCS; (b) ADCS

    Figure 4.  Vorticity magnitude contour of $ 128^2 $ grid: (a) DCS; (b) ADCS

    图 5  中心线处水平速度型比较 (a) $ 64^2 $网格; (b) $ 128^2 $网格

    Figure 5.  Comparison of u velocity profile at centerline: (a) 642; (b) $ 128^2 $

    图 6  不同时刻能量谱曲线 (a) $ U_0 t/L = 98 $; (b) $ U_0 t/L = $171

    Figure 6.  Comparison of energy-spectral: (a) $ U_0 t/L = 98 $; (b) $ U_0 t/L = 171 $

    图 7  $ U_0 t/L = 98 $$ Q $等值面云图 (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    Figure 7.  $ Q $-criterion iso-surface at $ U_0 t/L = 98 $: (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    图 8  $ U_0 t/L = 171 $$ Q $等值面云图 (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    Figure 8.  $ Q $- criterion iso-surface at $ U_0 t/L = 171 $: (a) ADCS$ (\alpha_{\rm {min}}) $; (b) ADCS; (c) DCS

    图 9  $ Re_\tau = 180 $条件下$ u^+ $$ 20 f_{\rm d} $分布曲线

    Figure 9.  $ u^+ $ and $ 20 f_{\rm d} $ curves at $ Re_\tau = 180 $

    图 10  $ Re_\tau = 180 $条件下$ Q $ 等值面 (a) DCS; (b) ADCS

    Figure 10.  $ Q $ criterion iso-surface at $ Re_\tau = 180 $: (a) DCS; (b) ADCS

    图 11  $ Re_\tau = 180 $条件下ADCS $ f_{\rm d}$$ \alpha $分布 (a) $ f_{\rm d} $; (b) $ \alpha $

    Figure 11.  The contour of $ f_{\rm d} $ and $ \alpha $ of ADCS at $ Re_\tau = 180 $: (a) $ f_{\rm d} $; (b) $ \alpha $

    图 12  $ y = 0.1 H $$ y $方向涡量分布云图 (a) DCS; (b) ADCS

    Figure 12.  The contour of vorticity y at $ y = 0.1 H $: (a) DCS; (b) ADCS

    图 13  圆柱尾流$ Q $等值面云图 (a) DCS; (b) ADCS

    Figure 13.  $ Q $ criterion at the wake of circular cylinder: (a) DCS; (b) ADCS

    图 14  圆柱表面压力系数分布曲线

    Figure 14.  $ C_{\rm p} $ around the circular cylinder

    图 15  $ y = 0 $处水平速度分布曲线

    Figure 15.  u velocity profile at $ y = 0 $

    图 16  $ x/D = 1.06, 1.54, 2.02 $三个站位时均速度分布 (a) $ u $; (b) $ v $

    Figure 16.  Mean velocity profile at $ x/D = 1.06, 1.54, 2.02 $: (a) $ u $; (b) $ v $

    图 19  $ x/D = 4.0, 7.0, 10.0 $三个站位雷诺应力分布 (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    Figure 19.  Reynolds stress profile at $ x/D = 4.0, 7.0, 10.0 $: (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    图 17  $ x/D = 1.06, 1.54, 2.02 $三个站位雷诺应力分布 (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    Figure 17.  Reynolds stress profile at $ x/D = 1.06, 1.54, 2.02 $: (a) $ u'u' $; (b) $ u'v' $; (c) $ v'v' $

    图 18  $ x/D = 4.0, 7.0, 10.0 $三个站位时均速度分布 (a) $ u $; (b) $ v $

    Figure 18.  Mean velocity profile at $ x/D = 4.0, 7.0, 10.0 $: (a) $ u $; (b) $ v $

    表 1  $ L_2 $ 误差和计算精度比较

    Table 1.  Comparison of $ L_2 $ error and accuracy of order

    网格 ADCS DCS
    $ L_2 $误差 精度 $ L_2 $误差 精度
    $ 32^2 $ 5.91520$ \times 10^{-9} $ 5.49050$ \times 10^{-9} $
    $ 48^2 $ 4.14450$ \times 10^{-9} $ 0.87 3.84780$ \times 10^{-9} $ 0.88
    $ 64^2 $ 2.33030$ \times 10^{-9} $ 2.01 2.06870$ \times 10^{-9} $ 2.16
    $ 96^2 $ 2.59250$ \times 10^{-10} $ 5.42 5.15010$ \times 10^{-10} $ 3.43
    $ 128^2 $ 5.39380$ \times 10^{-11} $ 5.46 1.26630$\times 10^{-10}$ 4.88
    DownLoad: CSV
  • [1]

    Cummingsa R M, Forsytheb J R, Mortonb S A 2003 Prog. Aerosp. Sci 39 369Google Scholar

    [2]

    Tucker P 2016 Appl. Math. Comput. 272 582

    [3]

    王光学, 王圣业, 葛明明, 邓小刚 2018 物理学报 67 194701Google Scholar

    Wang G X, Wang S Y, Ge M M, Deng X G 2018 Acta Phys. Sin. 67 194701Google Scholar

    [4]

    葛明明, 王圣业, 王光学, 邓小刚 2019 物理学报 68 204702Google Scholar

    Ge M M, Wang S Y, Wang G X, Deng X G 2019 Acta Phys. Sin. 68 204702Google Scholar

    [5]

    Travin A, Shur M, Strelets M, Spalart P R 2002 Adv. LES Complex. Flow 65 239

    [6]

    Jiang G S 1996 J. Comput. Phys. 126 202Google Scholar

    [7]

    Henrick A K, Aslam T D, Powers J M 2005 J. Comput. Phys. 207 542Google Scholar

    [8]

    Borges R, Carmona M, Costa B, Don W S 2008 J. Comput. Phys. 227 3191Google Scholar

    [9]

    Martín M P, Taylor E M, Wu M, Weirs V G 2006 J. Comput. Phys. 220 270Google Scholar

    [10]

    Hu X Y, Wang Q, Adams N A 2010 J. Comput. Phys. 229 8952Google Scholar

    [11]

    Wong M L, Lele S K 2017 J. Comput. Phys. 339 179Google Scholar

    [12]

    Adams N A, Shariff K 1996 J. Comput. Phys. 127 27Google Scholar

    [13]

    Pirozzoli S 2002 J. Comput. Phys. 178 81Google Scholar

    [14]

    Shahbazi K, Nathan A, Oscar P B, Jan S H 2011 J. Comput. Phys. 230 8779Google Scholar

    [15]

    Meitz H L, Fasel H F 2000 J. Comput. Phys. 157 371Google Scholar

    [16]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [17]

    Deng X, Shen C 1996 AIAA 27th Fluid Dynamics Conference, New Orleans, USA, June 17–20, 1996

    [18]

    Chaouat, Bruno 2017 Flow Turbul. Combust. 99 279Google Scholar

    [19]

    Xiao Z, Fu S 2009 Acta Mech. Sin. 25 471Google Scholar

    [20]

    Mary I, Sagaut P 2002 AIAA 40 1139Google Scholar

    [21]

    Anderson N, Eriksson L E, Davidson L 2005 AIAA 43 1899Google Scholar

    [22]

    Bui T T 2000 Comput. Fluids 29 877Google Scholar

    [23]

    Qin N, Xia H 2008 Proc. Inst. Mech. Eng. I 222 373

    [24]

    Yoon S, Barnhardt M, Candler G 48th AIAA Aerospace Science Meeting, Orlando, USA, January 4–7, 2010 p1573

    [25]

    Mockett C 2009 Ph. D. Dissertation (Berlin: Technische Universitat Berlin)

    [26]

    Tajallipour N, Babaee Owlam B, Paraschivoiu M 2009 J. Aircraft 46 915Google Scholar

    [27]

    Xiao Z, Jian L, Huang J, Song F 2012 AIAA 50 1119Google Scholar

    [28]

    Spalart P R, Jou W H, Strelets M, Allmaras S R 1997 Adv. In DNS/LES (Columbus: Greyden Press) pp137–149

    [29]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 8–11, 2001 pA01-16694

    [30]

    Spalart P R, Deck S, Shur M L, Squires K D, Strelets M K, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181Google Scholar

    [31]

    Pirozzoli S 2006 J. Comput. Phys. 219 489Google Scholar

    [32]

    Wang Z J, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H T 2013 Int. J. Numer. Methods Fluids 72 811Google Scholar

    [33]

    Kroll N, Bieler H, Deconinck H, Couaillier V, Ven H v d, Sorensen K 2010 ADIGMA A European Initiative on the Development of Adaptive Higher-order Variational Methods for Aerospace Applications (Berlin: Springer) pp1–10

    [34]

    Comte-Bellot G, Corrsin S 1971 J. Fluid. Mech. 48 273Google Scholar

    [35]

    Bunge U, Mockett C, Thiele F 2007 Aerosp. Sci. Technol. 11 376Google Scholar

    [36]

    Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) pp264–288

    [37]

    Kravchenko, P M 2000 Phys. Fluids 12 403Google Scholar

    [38]

    Parnaudeau P, Carlier J, Heitz D, Lamballais E 2008 Phys. Fluids 20 261

  • [1] Lu Wei, Chen Shuo, Yu Zhi-Yuan, Zhao Jia-Yi, Zhang Kai-Xuan. Improvement of natural convection simulation based on energy conservation dissipative particle dynamics. Acta Physica Sinica, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [2] Chen Yan-Jun, Wang Sheng-Ye, Fu Xiang, Liu Wei. Preliminary study on Reynolds stress model based on νt-scale equation. Acta Physica Sinica, 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong. Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement. Acta Physica Sinica, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [4] Dong Shuai, Ji Xiang-Yong, Li Chun-Xi. Large eddy simulation of Taylor-Couette turbulent flow under transverse magnetic field. Acta Physica Sinica, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [5] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [6] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [7] Wang Guang-Xue, Wang Sheng-Ye, Ge Ming-Ming, Deng Xiao-Gang. High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy. Acta Physica Sinica, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [8] Song Wen-Hua, Wang Ning, Gao Da-Zhi, Wang Hao-Zhong, Qu Ke. Concept of waveguide invariant spectrum and algorithm for its extraction. Acta Physica Sinica, 2017, 66(11): 114301. doi: 10.7498/aps.66.114301
    [9] Wang Sheng-Ye, Wang Guang-Xue, Dong Yi-Dao, Deng Xiao-Gang. High-order detached-eddy simulation method based on a Reynolds-stress background model. Acta Physica Sinica, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [10] Xie Wen-Jia, Li Hua, Pan Sha, Tian Zheng-Yu. On the accuracy and robustness of a new flux splitting method. Acta Physica Sinica, 2015, 64(2): 024702. doi: 10.7498/aps.64.024702
    [11] Zhu Hang, Zhang Shu-Ning, Zhao Hui-Chang. Single-channel source separation of radar fuze mixed signal using advanced adaptive decomposition. Acta Physica Sinica, 2014, 63(5): 058401. doi: 10.7498/aps.63.058401
    [12] Bi Chuan-Xing, Hu Ding-Yu, Zhang Yong-Bin, Xu Liang. Sound field separation technique based on equivalent source method and double-layer particle velocity measurements. Acta Physica Sinica, 2013, 62(8): 084301. doi: 10.7498/aps.62.084301
    [13] Xia Bin-Kai, Li Jian-Feng, Li Wei-Hua, Zhang Hong-Dong, Qiu Feng. A dissipative dynamical method based on discrete variational principle:stationary shapes of three-dimensional vesicle. Acta Physica Sinica, 2013, 62(24): 248701. doi: 10.7498/aps.62.248701
    [14] Liu Han-Tao, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong. Dissipative particle dynamics simulation of multiphase flow through a mesoscopic channel. Acta Physica Sinica, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [15] Wang Shi-Yuan, Feng Jiu-Chao. A novel method of estimating parameter and its application to blind separation of chaotic signals. Acta Physica Sinica, 2012, 61(17): 170508. doi: 10.7498/aps.61.170508
    [16] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] Zhou Feng-Mao, Sun Dong-Ke, Zhu Ming-Fang. Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys. Acta Physica Sinica, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] Hu Chun-Hong, Li Hui, Luo Shu-Qian, Wang Xue-Yan, Zhang Lu. The study of information extraction based on diffraction enhanced imaging. Acta Physica Sinica, 2009, 58(4): 2423-2429. doi: 10.7498/aps.58.2423
    [19] Li Xue-Xia, Feng Jiu-Chao. A blind separation method for chaotic signals. Acta Physica Sinica, 2007, 56(2): 701-706. doi: 10.7498/aps.56.701
    [20] Qin Pei, Lou Yu-Wan, Yang Chuan-Zheng, Xia Bao-Jia. New computing methods and programs for separating multipe-broadening effects of X-ray diffraction lines. Acta Physica Sinica, 2006, 55(3): 1325-1335. doi: 10.7498/aps.55.1325
Metrics
  • Abstract views:  6292
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2020
  • Accepted Date:  12 April 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回