Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-order detached-eddy simulation method based on a Reynolds-stress background model

Wang Sheng-Ye Wang Guang-Xue Dong Yi-Dao Deng Xiao-Gang

Citation:

High-order detached-eddy simulation method based on a Reynolds-stress background model

Wang Sheng-Ye, Wang Guang-Xue, Dong Yi-Dao, Deng Xiao-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Referring to the construction of shear stress transport-improved delayed detached-eddy simulation (SST-IDDES) method, a variant of IDDES method based on the Speziale-Sarkar-Gatski/Launder-Reece-Rodi (SSG/LRR)-ω Reynolds-stress model (RSM) as Reynolds-averaged Navier-Stokes (RANS) background model, is proposed. Through combining high-order weighted compact nonlinear scheme (WCNS), the SSG/LRR-IDDES method is applied to three aeronautic cases and compared with traditional methods:SST-unsteady Reynolds-averaged Navier-Stokes (URANS), SSG/LRR-URANS, and SST-IDDES. To verify the SSG/LRR-IDDES method in simulating airfoil stalled flow, NACA0012 airfoil is adopted separately at attack angles of 17°, 45° and 60°. At the attack angle of 17°, SST-URANS, SSG/LRR-URANS, and SST-IDDES methods each predict a higher lift coefficient than the experimental data, while the SSG/LRR-IDDES method obtains a better lift coefficient result and a higher fidelity vortical flow structure. It indicates that the RSM can improve the prediction of RANS-mode for pressure-induced separations on airfoil surfaces in detached-eddy simulation. At the attack angles of 45° and 60°, the SSG/LRR-IDDES method captures the massively separated flow with three-dimensional vortical structures and obtains a good result, which is the same as that from the traditional SST-IDDES method. To indicate the improvement of the SSG/LRR-IDDES method in simulating airfoil trailing edge separation, NACA4412 airfoil is adopted. At the attack angle of 12° (maximum lift), the trailing edge separation is mainly induced by pressure gradient. The SSG/LRR-IDDES method can predict the separation process reasonably and obtains a good lift coefficient and location of separation compared with experimental results. However, none of other methods can predict trailing edge separation. It confirms that when RSM is adopted as RANS background model in detached-eddy simulation, the ability to predict pressure-induced separation on airfoil surface is improved. For further verifying the SSG/LRR-IDDES method for simulating three-dimensional separated flow, blunt-edge deltawing at the attack angle of 24.6° is adopted. At this attack angle, the primary vortex will break, which is difficult to predict by using the SST-URANS method. For the SSG/LRR-URANS method, it predicts the vortex breakdown successfully, but the breakdown process does not show any significant unsteady characteristic. The SST-IDDES and the SSG/LRR-IDDES methods both predict a significant unsteady vortex breakdown. But in terms of the accuracy of surface pressure and the fidelity of unsteady flow, the result obtained by the SSG/LRR-IDDES method is better than by the SST-IDDES method.
      Corresponding author: Deng Xiao-Gang, xgdeng2000@vip.sina.com
    • Funds: Project supported by the Foundation of the National University of Defense Technology of China (Grant No. ZDYYJCYJ20140101).
    [1]

    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D 2014 CFD Vision 2030 Study:A Path to Revolutionary Computational Aerosciences (Washington, DC:Langley Research Center, NASA) Tech. Rep. NASA/CR-2014-218178

    [2]

    Eisfeld B, Rumsey C, Togiti V 2016 AIAA J. 54 1524

    [3]

    Rumsey C 2014 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-0201

    [4]

    Tucker P 2006 Int. J. Numer. Meth. Fluids 51 261

    [5]

    Richez F, Pape A, Costes M 2015 AIAA J. 53 3157

    [6]

    Xu G, Jiang X, Liu G 2016 Acta Mech. Sin. 32 588

    [7]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach (Columbus:Greyden Press)

    [8]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [9]

    Probst A, Radespiel R, Knopp T 2011 20st AIAA Computational Fluid Dynamics Conference Honolulu, Hawaii, June 27-30, 2011 AIAA 2011-3206

    [10]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, 8-11 January 2001, AIAA 2001-0879

    [11]

    Greschner B, Thiele F, Gurr A, Casalino D, Jacob M 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2628

    [12]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluids 37 402

    [13]

    Cécora R D, Radespiel R, Eisfeld B, Probst A 2015 AIAA J. 53 739

    [14]

    Rumsey C 2015 in Eisfeld B (ed.) Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics (Springer Tracts Mechanical Engineering) p19

    [15]

    Eisfeld B, Brodersen O 2005 23rd AIAA Applied Aerodynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-4727

    [16]

    Togiti V, Eisfeld B, Brodersen O 2014 J. Aircraft 51 1331

    [17]

    Dong Y D, Wang D F, Wang G X, Deng X G 2016 J. National Univ. Defense Technol. 38 46(in Chinese)[董义道, 王东方, 王光学, 邓小刚2016国防科技大学学报 38 46]

    [18]

    Shu C 2003 Int. J. Comput. Fluid D 17 107

    [19]

    Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H, Kroll N, May G, Persson P O, van Leer B, Visbal M 2013 Int. J. Numer. Meth. Fluids 72 811

    [20]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Int. J. Comput. Fluid D 30 469

    [21]

    Georgiadis N, Rizzetta D, Fureby C 2010 AIAA J. 48 1772

    [22]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [23]

    Deng X, Liu X, Mao M, Zhang H 2005 17th AIAA Computational Fluid Dynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-5246

    [24]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [25]

    Bellot G, Corrsin S 1971 J. Fluid Mech. 48 273

    [26]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [27]

    Shur M, Spalart P, Strelets M, Travin A 2008 Int. J. Heat Fluid Fl. 29 1638

    [28]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [29]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [30]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705(in Chinese)[冈敦殿, 易仕和, 赵云飞2015物理学报 64 054705]

    [31]

    Schumann U 1977 Phys. Fluids 20 721

    [32]

    Chassaing J, Gerolymos G, Vallet I 2003 AIAA J. 41 763

    [33]

    Yossef Y 2014 J. Comput. Phys. 276 635

    [34]

    Yang Y, Zha G 2016 46th AIAA Fluid Dynamics Conference Washington, D.C., USA, June 13-17, 2016 AIAA 2016-3185

    [35]

    Shur M, Spalart P, Strelets M, Travin A 1999 Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements Corsica, France, May 24-26, 1999 p669

    [36]

    Chen M Z 2002 Fundamentals of Viscous Fliud Dynamics (Beijing:Higher Education Press) p239(in Chinese)[陈懋章2002粘性流体动力学基础(北京:高等教育出版社)第239页]

    [37]

    Chen Y, Guo L D, Peng Q, Chen Z Q, Liu W H 2015 Acta Phys. Sin. 64 134701(in Chinese)[陈勇, 郭隆德, 彭强, 陈志强, 刘卫红2015物理学报 64 134701]

    [38]

    Wadcock A 1987 Investigation of Low Speed Turbulent Scparatcd Flow Around Airfoils (Washington, DC:Ames Research Center, NASA) Tech. Rep. NASA-CR-177450

    [39]

    Roy R, Stoellinger M 2015 53rd AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 5-9, 2015 AIAA 2015-1982

    [40]

    Luckring M, Hummel D 2013 Aerosp. Sci. Technol. 24 77

    [41]

    Chu J, Luckring M 1996 Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3:Medium-Radius Leading Edge (Washington, DC:Ames Research Center, NASA) NASA-TM-4645-Vol-3

    [42]

    Luckring M 2013 Aerosp. Sci. Technol. 24 10

  • [1]

    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D 2014 CFD Vision 2030 Study:A Path to Revolutionary Computational Aerosciences (Washington, DC:Langley Research Center, NASA) Tech. Rep. NASA/CR-2014-218178

    [2]

    Eisfeld B, Rumsey C, Togiti V 2016 AIAA J. 54 1524

    [3]

    Rumsey C 2014 52nd Aerospace Sciences Meeting National Harbor, Maryland, January 13-17, 2014 AIAA 2014-0201

    [4]

    Tucker P 2006 Int. J. Numer. Meth. Fluids 51 261

    [5]

    Richez F, Pape A, Costes M 2015 AIAA J. 53 3157

    [6]

    Xu G, Jiang X, Liu G 2016 Acta Mech. Sin. 32 588

    [7]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach (Columbus:Greyden Press)

    [8]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [9]

    Probst A, Radespiel R, Knopp T 2011 20st AIAA Computational Fluid Dynamics Conference Honolulu, Hawaii, June 27-30, 2011 AIAA 2011-3206

    [10]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, 8-11 January 2001, AIAA 2001-0879

    [11]

    Greschner B, Thiele F, Gurr A, Casalino D, Jacob M 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2628

    [12]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluids 37 402

    [13]

    Cécora R D, Radespiel R, Eisfeld B, Probst A 2015 AIAA J. 53 739

    [14]

    Rumsey C 2015 in Eisfeld B (ed.) Differential Reynolds Stress Modeling for Separating Flows in Industrial Aerodynamics (Springer Tracts Mechanical Engineering) p19

    [15]

    Eisfeld B, Brodersen O 2005 23rd AIAA Applied Aerodynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-4727

    [16]

    Togiti V, Eisfeld B, Brodersen O 2014 J. Aircraft 51 1331

    [17]

    Dong Y D, Wang D F, Wang G X, Deng X G 2016 J. National Univ. Defense Technol. 38 46(in Chinese)[董义道, 王东方, 王光学, 邓小刚2016国防科技大学学报 38 46]

    [18]

    Shu C 2003 Int. J. Comput. Fluid D 17 107

    [19]

    Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H, Kroll N, May G, Persson P O, van Leer B, Visbal M 2013 Int. J. Numer. Meth. Fluids 72 811

    [20]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Int. J. Comput. Fluid D 30 469

    [21]

    Georgiadis N, Rizzetta D, Fureby C 2010 AIAA J. 48 1772

    [22]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [23]

    Deng X, Liu X, Mao M, Zhang H 2005 17th AIAA Computational Fluid Dynamics Conference Toronto, Ontario Canada, June 6-9, 2005 AIAA 2005-5246

    [24]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [25]

    Bellot G, Corrsin S 1971 J. Fluid Mech. 48 273

    [26]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [27]

    Shur M, Spalart P, Strelets M, Travin A 2008 Int. J. Heat Fluid Fl. 29 1638

    [28]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [29]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [30]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705(in Chinese)[冈敦殿, 易仕和, 赵云飞2015物理学报 64 054705]

    [31]

    Schumann U 1977 Phys. Fluids 20 721

    [32]

    Chassaing J, Gerolymos G, Vallet I 2003 AIAA J. 41 763

    [33]

    Yossef Y 2014 J. Comput. Phys. 276 635

    [34]

    Yang Y, Zha G 2016 46th AIAA Fluid Dynamics Conference Washington, D.C., USA, June 13-17, 2016 AIAA 2016-3185

    [35]

    Shur M, Spalart P, Strelets M, Travin A 1999 Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements Corsica, France, May 24-26, 1999 p669

    [36]

    Chen M Z 2002 Fundamentals of Viscous Fliud Dynamics (Beijing:Higher Education Press) p239(in Chinese)[陈懋章2002粘性流体动力学基础(北京:高等教育出版社)第239页]

    [37]

    Chen Y, Guo L D, Peng Q, Chen Z Q, Liu W H 2015 Acta Phys. Sin. 64 134701(in Chinese)[陈勇, 郭隆德, 彭强, 陈志强, 刘卫红2015物理学报 64 134701]

    [38]

    Wadcock A 1987 Investigation of Low Speed Turbulent Scparatcd Flow Around Airfoils (Washington, DC:Ames Research Center, NASA) Tech. Rep. NASA-CR-177450

    [39]

    Roy R, Stoellinger M 2015 53rd AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 5-9, 2015 AIAA 2015-1982

    [40]

    Luckring M, Hummel D 2013 Aerosp. Sci. Technol. 24 77

    [41]

    Chu J, Luckring M 1996 Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Vol. 3:Medium-Radius Leading Edge (Washington, DC:Ames Research Center, NASA) NASA-TM-4645-Vol-3

    [42]

    Luckring M 2013 Aerosp. Sci. Technol. 24 10

  • [1] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] Chen Yan-Jun, Wang Sheng-Ye, Fu Xiang, Liu Wei. Preliminary study on Reynolds stress model based on νt-scale equation. Acta Physica Sinica, 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] Liu Xiao-Wei, Song Hui, Guo Mei-Qing, Wang Gen-Wei, Chi Qing-Zhuo. Simulation and optimization of silicon/carbon core-shell structures in lithium-ion batteries based on electrochemical-mechanical coupling model. Acta Physica Sinica, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [4] Dong Shuai, Ji Xiang-Yong, Li Chun-Xi. Large eddy simulation of Taylor-Couette turbulent flow under transverse magnetic field. Acta Physica Sinica, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [5] Lin Li-Ming. Vorticity sign law in three-dimensional wake of bluff body at low Reynolds number. Acta Physica Sinica, 2020, 69(3): 034701. doi: 10.7498/aps.69.20191011
    [6] Li Hao, Liu Wei, Wang Sheng-Ye. A method of adaptively adjusting dissipation for the simulation of separated flow. Acta Physica Sinica, 2020, 69(14): 144702. doi: 10.7498/aps.69.20200102
    [7] Zheng Tian-Yun, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. High-order natural transition simulation method based on deep residual network. Acta Physica Sinica, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [8] Ren Jin-Lian, Ren Heng-Fei, Lu Wei-Gang, Jiang Tao. Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method. Acta Physica Sinica, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [9] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [10] Wang Guang-Xue, Wang Sheng-Ye, Ge Ming-Ming, Deng Xiao-Gang. High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy. Acta Physica Sinica, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [11] Zhang Zhong-Yu, Yao Xiong-Liang, Zhang A-Man. Numerical simulation of laminar flow past two side-by-side cylinders by discontinuous Galerkin method. Acta Physica Sinica, 2016, 65(8): 084701. doi: 10.7498/aps.65.084701
    [12] Bao Yun, Ning Hao, Xu Wei. Corner vortex characteristics at the reversal of large scale circulation in turbulent Rayleigh-Bnard convection. Acta Physica Sinica, 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [13] Wu Wen-Tang, Hong Yan-Ji, Fan Bao-Chun. Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force. Acta Physica Sinica, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [14] Liu Zhong-Miao, Sun Qi-Cheng, Song Shi-Xiong, Shi Qing-Fan. Non-equilibrium thermodynamic analysis of quasi-static granular flows. Acta Physica Sinica, 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [15] Yang Bin-Xin, Ouyang Jie. Simulation of residual stress in viscoelastic mold filling process. Acta Physica Sinica, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [16] Du Cheng, Xu Min-Yi, Mi Jian-Chun. Effect of exit Reynolds number on a turbulent round jet. Acta Physica Sinica, 2010, 59(9): 6331-6338. doi: 10.7498/aps.59.6331
    [17] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [18] Feng Shi-De, Zhong Lin-Hao, Gao Shou-Ting, Dong Ping. Equilibrium distribution boundary condition in lattice Boltzmann model and numerical simulation of Darcy-Forcheimer drag for fluid flow across a square cylinder array. Acta Physica Sinica, 2007, 56(3): 1238-1244. doi: 10.7498/aps.56.1238
    [19] SUN ZHONG-QI, JIANG FANG-XING. SIMPLIFIED ELASTIC DIPOLE MODEL OF NONLINEAR STRESS-INDUCED DIFFUSION OF INTERSTITIALS. Acta Physica Sinica, 1989, 38(10): 1679-1686. doi: 10.7498/aps.38.1679
    [20] P.Y.Chou. On An Extension of Reynolds' Method of Finding Apparent Stress and the Nature of Turbulence. Acta Physica Sinica, 1940, 4(1): 1-34. doi: 10.7498/aps.4.1
Metrics
  • Abstract views:  8447
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2017
  • Accepted Date:  14 May 2017
  • Published Online:  05 September 2017

/

返回文章
返回