Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vorticity sign law in three-dimensional wake of bluff body at low Reynolds number

Lin Li-Ming

Citation:

Vorticity sign law in three-dimensional wake of bluff body at low Reynolds number

Lin Li-Ming
PDF
HTML
Get Citation
  • Bluff bodies possess many engineering applications. The flow past a bluff body is a classical issue in fluid mechanics. In most of previous studies, the role of streamwise vorticity is mainly stressed in three-dimensional wake flow, such as in the physical origin of streamwise vortices in the mode A, and the complete suppression of alternatively shedding Kármán vortices under the effect of geometric disturbances introduced in the bluff body. However, through the careful investigation of two examples above, the vertical vorticity actually plays a key role. Furthermore, there is a physical phenomenon, special relationship among dominant vorticity components with specific signs or vorticity sign law, occurring in the wake of a bluff body with geometric disturbances. In the present paper, through direct numerical simulations at low Reynolds numbers, such a phenomenon is summarized in two kinds of cylinders, i.e. basic straight cylinder and geometrically disturbed cylinder. Two typical cross-sections are examined, including the circular and square sections. Three sub-regimes (front surfaces, shear layers and wake) are mainly investigated. The numerical results show that two generalized vorticity sign laws exist in the wake of a bluff body. For example, the first sign law shows that the sign of streamwise vorticity is always the same as that of vertical vorticity in the upper shear layer, but opposite in the lower shear layer. The second sign law shows that the sign combination of three components of vorticity is always negative in the shear layers and wake. As for the physical mechanism of sign laws appearing in the present two kinds of cylinders, the main difference between the small perturbance which induces the natural three-dimensional instability and the geometric disturbance leads to the evolution of generated surface vorticity under the effect of inertial forces. These generalized sign laws have been already verified theoretically in the previous work recently. Moreover, sign laws also indicate that the different vortex-shedding patterns in the wake of different bluff bodies are inherently identical from the point of vorticity sign. Considering the physical fact that the wall is the only source of new vorticity in the present vortex dynamics, the theoretical results also indicate that the Π-type vortex with specific groups of vorticity components is a basic vortex pattern generated on the walls, once the three-dimensional wake first appears in the wake at low Reynolds number.
      Corresponding author: Lin Li-Ming, llmbirthday@163.com
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDB22030101)
    [1]

    Karniadakis G E, Triantafyllou G S 1992 J. Fluid Mech. 238 1Google Scholar

    [2]

    武作兵, 凌国灿 1993 力学学报 25 264

    Wu Z B, Ling G C 1993 Chin. J. Theoret. Appl. Mech. 25 264

    [3]

    Barkely D, Henderson R D 1996 J. Fluid Mech. 322 215Google Scholar

    [4]

    Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477Google Scholar

    [5]

    Williamson C H K 1996 J. Fluid Mech. 328 345Google Scholar

    [6]

    Henderson R D 1997 J. Fluid Mech. 352 65Google Scholar

    [7]

    Leweke T, Williamson C H K 1998 Euro. J. Mech. B/Fluids 17 571Google Scholar

    [8]

    凌国灿, 常勇 1999 力学学报 31 652

    Ling G C, Chang Y 1999 Chin. J. Theoret. Appl. Mech. 31 652

    [9]

    Barkley D, Tuckerman L S, Golubitsky M 2000 Phys. Rev. E 61 5247Google Scholar

    [10]

    Thompson M C, Leweke T, Williamson C H K 2001 J. Fluid. Struct. 15 607Google Scholar

    [11]

    Posdziech O, Grundmann R 2001 Theo. Comput. Fluid Dyn. 15 121Google Scholar

    [12]

    Rao A, Thompson M C, Leweke T, Hourigan K 2013 J. Fluid.Struct. 41 9Google Scholar

    [13]

    Sheard G J, Thompson M C, Hourigan K 2003 Phys. Fluids 15 L68Google Scholar

    [14]

    Jiang H, Cheng L, Draper S, An H, Tong F 2016 J. Fluid Mech. 801 353Google Scholar

    [15]

    Jiang H, Cheng L, Draper S, An H 2017 Comput. Fluids 149 172Google Scholar

    [16]

    Sarpkaya T 2004 J. Fluid. Struct. 19 389Google Scholar

    [17]

    Williamson C H K, Govardhan R 2004 Annu. Rev. Fluid Mech. 36 413Google Scholar

    [18]

    Gabbai R D, Benaroya H 2005 J. Sound Vib. 282 575Google Scholar

    [19]

    Williamson C H K, Govardhan R 2008 J. Wind Eng. Ind. Aerodyn. 96 713Google Scholar

    [20]

    Kumar R A, Sohn C H, Gowda B H L 2008 Recent Patents Mech. Eng. 1 1Google Scholar

    [21]

    Darekar R M, Sherwin S J 2001 J. Fluid Mech. 426 263Google Scholar

    [22]

    Lam K, Lin Y F 2008 Int. J. Heat Fluid Flow 29 1071Google Scholar

    [23]

    林黎明 2007 博士学位论文 (北京: 中国科学院力学研究所)

    Lin L M 2007 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Sciences) (in Chinese)

    [24]

    Lin L M, Ling G C, Wu Y X 2010 Chin. Phys. Lett. 27 034702Google Scholar

    [25]

    Lin L M, Shi S Y, Wu Y X 2019 Acta Mech. Sin. 35 411Google Scholar

    [26]

    Lin L M, Zhong X F, Wu Y X 2018 Acta Mech. Sin. 34 812Google Scholar

    [27]

    Lin L M, Shi S Y, Zhong X F, Wu Y X 2019 Acta Mech. Sin. 35 1Google Scholar

    [28]

    Lin L M, Shi S Y, Wu Y X 2018 Theo. App. Mech. Lett. 8 320Google Scholar

    [29]

    Lin L M, Tan Z R 2019 Acta Mech. Sin. 35 1131Google Scholar

    [30]

    Meiburg E, Lasheras J C 1988 J. Fluid Mech. 190 1Google Scholar

  • 图 1  各种几何结构形式的钝体绕流示意图 (a)圆形截面的直圆柱; (b)方形截面的直方柱; (c)圆形截面的谐波柱; (d)圆形截面的圆锥柱; (e)方形截面的全弯曲方柱

    Figure 1.  Schematics of a flow past a bluff body with different geometry: (a) The straight cylinder with circular cross-section; (b) the straight cylinder with square cross-section; (c) the harmonic cylinder with circular cross-section; (d) the conic cylinder with circular cross-section; (e) the wholly wavy cylinder with square cross-section.

    图 2  Re = 200时直圆柱尾迹中各个涡分量等值面以及柱体表面各个涡分量等值线(其中红色和蓝色分别表示正值和负值, 注意等值面图中采用半透明灰色面来表示圆柱体, 且流动从左至右) (a) ${\omega _x} = \pm 0.4$等值面; (b) ${\omega _y} = \pm 0.2$等值面; (c) ${\omega _z} = \pm 0.8$等值面; (d) ${\omega _x}$等值线; (e) ${\omega _y}$等值线; (f) ${\omega _z}$等值线

    Figure 2.  At Re = 200, iso-surfaces of ${{\omega}}$ in the wake of a straight circular cylinder, and contours of ${{\omega}}$ on cylinder surfaces, where red and blue colors denote positive and negative values, respectively: (a) Iso-surfaces of ${\omega _x} = \pm 0.4$; (b) iso-surfaces of ${\omega _y} = \pm 0.2$; (c) iso-surfaces of ${\omega _z} = \pm 0.8$; (d) contours of ${\omega _x}$; (e) contours of ${\omega _y}$; (f) contours of ${\omega _z}$. Note that the cylinder is denoted by the grey translucent surface in iso-surfaces and the flow is from left to right.

    图 3  Re = 300时直圆柱尾迹中各个涡分量等值面以及柱体表面各个涡分量等值线(其中红色和蓝色分别表示正值和负值, 以及等值线图中的绿色则表示$\left| {{\omega _x}} \right|$$\left| {{\omega _y}} \right|$小于0.001; 注意, 等值面图中采用半透明灰色面来表示圆柱体, 且流动从左至右) (a) ${\omega _x} = $$ \pm 0.2$等值面; (b) ${\omega _y} = \pm 0.2$等值面; (c) ${\omega _z} = \pm 1$等值面; (d) ${\omega _x}$等值线; (e) ${\omega _y}$等值线; (f) ${\omega _z}$等值线

    Figure 3.  At Re = 300, iso-surfaces of ${{\omega}}$ in the wake of a straight circular cylinder, and contours of ${{\omega}}$ on cylinder surfaces, where red and blue colors denote positive and negative values, respectively, and green color in contours denotes $\left| {{\omega _x}} \right|$ or $\left| {{\omega _y}} \right|$ less than 0.001: (a) Iso-surfaces of ${\omega _x} = \pm 0.2$; (b) iso-surfaces of ${\omega _y} = \pm 0.2$; (c) iso-surfaces of ${\omega _z} = \pm 1$; (d) contours of ${\omega _x}$; (e) contours of ${\omega _y}$; (f) contours of ${\omega _z}$. Note that the cylinder is denoted by the grey translucent surface in iso-surfaces and the flow is from left to right.

    图 4  Re = 180时直方柱尾迹中 (a) ${\omega _x} = \pm 0.8$(黄/绿)和${\omega _z} = \pm 1$ (红/蓝)等值面图, 其中背景为$z = 0$处的${\omega _z}$等值线色图; (b) $z = {\lambda / 4}$${\omega _x}$的等值线色图; (c) $z = {\lambda / 4}$${\omega _y}$的等值线色图; 图中红色和蓝色, 以及${\omega _z}$等值线的实线和虚线分别表示正值和负值

    Figure 4.  In the wake of a square cylinder at Re = 180: (a) Iso-surfaces of ${\omega _x} = \pm 0.8$ (yellow/green) and ${\omega _z} = \pm 1$ (red/blue), where the background is colorful contours of ${\omega _z}$ at $z = 0$; (b) colorful contours of ${\omega _x}$ at $z = {\lambda / 4}$; (c) colorful contours of ${\omega _y}$ at $z = {\lambda / 4}$. In Fig. 4, red and blue colors, as well as solid and dashed lines in contours of ${\omega _z}$, denote positive and negative values, respectively.

    图 5  Re = 250时直方柱尾迹中 (a) ${\omega _x} = \pm 0.8$(黄/绿)和${\omega _z} = \pm 1$ (红/蓝)等值面图, 其中背景为$z = 0$处的${\omega _z}$等值线色图; (b) $z = {\lambda / 4}$${\omega _x}$的等值线色图; (c) $z = {\lambda / 4}$${\omega _y}$的等值线色图, 其中红色和蓝色, 以及${\omega _z}$等值线的实线和虚线分别表示正值和负值

    Figure 5.  In the wake of a square cylinder at Re = 250: (a) Iso-surfaces of ${\omega _x} = \pm 0.8$ (yellow/green) and ${\omega _z} = \pm 1$ (red/blue), where the background is colorful contours of ${\omega _z}$ at $z = 0$; (b) colorful contours of ${\omega _x}$ at $z = {\lambda / 4}$; (c) colorful contours of ${\omega _y}$ at $z = {\lambda / 4}$. In Fig. 5, red and blue colors, as well as solid and dashed lines in contours of ${\omega _z}$, denote positive and negative values, respectively.

    图 6  Re = 100, ${W / \lambda } = 0.1$$\lambda = 8$时谐波柱尾迹中3个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$

    Figure 6.  At Re = 100, ${W / \lambda } = 0.1$ and $\lambda = 8$, iso-surfaces of three components of vorticity in the wake of a harmonic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 6, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.

    图 7  Re = 100, ${W / \lambda } = 0.1$$\lambda = 4$时谐波柱尾迹中3个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$

    Figure 7.  At Re = 100, ${W / \lambda } = 0.1$ and $\lambda = 4$, iso-surfaces of three components of vorticity in the wake of a harmonic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 7, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.

    图 8  Re = 100, ${W / \lambda } = 0.1$$\lambda = 8$时圆锥柱尾迹中三个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$

    Figure 8.  At Re = 100, ${W / \lambda } = 0.1$ and $\lambda = 8$, iso-surfaces of three components of vorticity in the wake of a conic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 8, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.

    图 9  Re = 100, ${W / \lambda } = 0.2$$\lambda = 4$时圆锥柱尾迹中3个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$

    Figure 9.  At Re = 100, ${W / \lambda } = 0.2$ and $\lambda = 4$, iso-surfaces of three components of vorticity in the wake of a conic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 9, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.

    图 10  典型的全弯曲方柱迎风面表面涡量分布(Re = 100, $\lambda = 5.6$${W / \lambda } = 0.025$) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$

    Figure 10.  Typical distributions of surface vorticity on the wholly wavy cylinder with a square cross-section (Re = 100, $\lambda = 5.6$ and ${W / \lambda } = 0.025$): (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$.

    图 11  Re = 100, $\lambda = 5.6$${W / \lambda } = 0.025$时全弯曲方柱尾迹中涡量等值面分布 (a) ${\omega _z} = \pm 1$ (红/蓝); (b) ${\omega _x} = $$\pm 0.25 $ (黄/绿)和${\omega _y} = \pm 0.5$(红/蓝)

    Figure 11.  At Re = 100, $\lambda = 5.6$ and ${W / \lambda } = 0.025$, iso-surfaces of $\omega $ in the wake of the wholly wavy cylinder with a square corss-section: (a) ${\omega _z} = \pm 1$ (red/blue); (b) ${\omega _x} = $$\pm 0.25 $ (yellow/green) and ${\omega _y} = \pm 0.5$(red/blue).

    图 12  Re = 100, $\lambda = 5.6$${W / \lambda } = 0.167$时全弯曲方柱尾迹中涡量等值面分布 (a) ${\omega _z} = \pm 1$ (红/蓝)和${\omega _x} =\pm 0.25$ (黄/绿); (b) ${\omega _x} = \pm 0.25$(黄/绿)和${\omega _y} = \pm 0.5$(红/蓝)

    Figure 12.  At Re = 100, $\lambda = 5.6$ and ${W / \lambda } = 0.167$, iso-surfaces of $\omega $ in the wake of the wholly wavy cylinder with a square corss-section: (a) ${\omega _z} = \pm 1$ (red/blue) and ${\omega _x} = \pm 0.25$ (yellow/green); (b) ${\omega _x} = \pm 0.25$(yellow/green) and ${\omega _y} =$$ \pm 0.5 $ (red/blue).

    表 1  不同几何结构的钝体绕流所采用的计算域及近壁网格尺度汇总

    Table 1.  Summary of computational domain and the nearest-wall grid used in a flow past a bluff body with different geometry.

    钝体结构类型计算域尺度近壁网格尺度
    入口出口两侧垂向
    圆形截面的直圆柱2030400.001
    方形截面的直方柱918180.008
    圆形截面的谐波柱1030200.005
    圆形截面的圆锥柱1030200.005
    方形截面的全弯曲方柱918180.008
    DownLoad: CSV
  • [1]

    Karniadakis G E, Triantafyllou G S 1992 J. Fluid Mech. 238 1Google Scholar

    [2]

    武作兵, 凌国灿 1993 力学学报 25 264

    Wu Z B, Ling G C 1993 Chin. J. Theoret. Appl. Mech. 25 264

    [3]

    Barkely D, Henderson R D 1996 J. Fluid Mech. 322 215Google Scholar

    [4]

    Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477Google Scholar

    [5]

    Williamson C H K 1996 J. Fluid Mech. 328 345Google Scholar

    [6]

    Henderson R D 1997 J. Fluid Mech. 352 65Google Scholar

    [7]

    Leweke T, Williamson C H K 1998 Euro. J. Mech. B/Fluids 17 571Google Scholar

    [8]

    凌国灿, 常勇 1999 力学学报 31 652

    Ling G C, Chang Y 1999 Chin. J. Theoret. Appl. Mech. 31 652

    [9]

    Barkley D, Tuckerman L S, Golubitsky M 2000 Phys. Rev. E 61 5247Google Scholar

    [10]

    Thompson M C, Leweke T, Williamson C H K 2001 J. Fluid. Struct. 15 607Google Scholar

    [11]

    Posdziech O, Grundmann R 2001 Theo. Comput. Fluid Dyn. 15 121Google Scholar

    [12]

    Rao A, Thompson M C, Leweke T, Hourigan K 2013 J. Fluid.Struct. 41 9Google Scholar

    [13]

    Sheard G J, Thompson M C, Hourigan K 2003 Phys. Fluids 15 L68Google Scholar

    [14]

    Jiang H, Cheng L, Draper S, An H, Tong F 2016 J. Fluid Mech. 801 353Google Scholar

    [15]

    Jiang H, Cheng L, Draper S, An H 2017 Comput. Fluids 149 172Google Scholar

    [16]

    Sarpkaya T 2004 J. Fluid. Struct. 19 389Google Scholar

    [17]

    Williamson C H K, Govardhan R 2004 Annu. Rev. Fluid Mech. 36 413Google Scholar

    [18]

    Gabbai R D, Benaroya H 2005 J. Sound Vib. 282 575Google Scholar

    [19]

    Williamson C H K, Govardhan R 2008 J. Wind Eng. Ind. Aerodyn. 96 713Google Scholar

    [20]

    Kumar R A, Sohn C H, Gowda B H L 2008 Recent Patents Mech. Eng. 1 1Google Scholar

    [21]

    Darekar R M, Sherwin S J 2001 J. Fluid Mech. 426 263Google Scholar

    [22]

    Lam K, Lin Y F 2008 Int. J. Heat Fluid Flow 29 1071Google Scholar

    [23]

    林黎明 2007 博士学位论文 (北京: 中国科学院力学研究所)

    Lin L M 2007 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Sciences) (in Chinese)

    [24]

    Lin L M, Ling G C, Wu Y X 2010 Chin. Phys. Lett. 27 034702Google Scholar

    [25]

    Lin L M, Shi S Y, Wu Y X 2019 Acta Mech. Sin. 35 411Google Scholar

    [26]

    Lin L M, Zhong X F, Wu Y X 2018 Acta Mech. Sin. 34 812Google Scholar

    [27]

    Lin L M, Shi S Y, Zhong X F, Wu Y X 2019 Acta Mech. Sin. 35 1Google Scholar

    [28]

    Lin L M, Shi S Y, Wu Y X 2018 Theo. App. Mech. Lett. 8 320Google Scholar

    [29]

    Lin L M, Tan Z R 2019 Acta Mech. Sin. 35 1131Google Scholar

    [30]

    Meiburg E, Lasheras J C 1988 J. Fluid Mech. 190 1Google Scholar

  • [1] Shao Kai-Hua, Xi Zhong-Hong, Xi Bao-Long, Tu Pu, Wang Qing-Qing, Ma Jin-Ping, Zhao Xi, Shi Yu-Ren. Asynchronous quantum Kármán vortex street in two-component Bose-Einstein condensate with PT symmetric potential. Acta Physica Sinica, 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] Wu Ming-Xing,  Tian De-Yang,  Tang Pu,  Tian Jing,  He Zhiyuan,  Ma Ping. Study on Retrieval Method of Two-dimensional Distribution of Hypersonic Model Wake Electron Density. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212345
    [4] Wu Ming-Xing, Tian De-Yang, Tang Pu, Tian Jing, He Zi-Yuan, Ma Ping. Inversion method of two-dimensional distribution of electron density in hypersonic model wake. Acta Physica Sinica, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [5] Huang Ya-Dong, Wang Zhi-He, Zhou Ben-Mou. Transition control of cylinder wake via Lorentz force. Acta Physica Sinica, 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [6] Wang Li, Liu Jing-Si, Li Ji, Zhou Xiao-Lin, Chen Xiang-Rong, Liu Chao-Fei, Liu Wu-Ming. The research progress of topological properties in spinor Bose-Einstein condensates. Acta Physica Sinica, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [7] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [8] Ge Ming-Ming, Wang Sheng-Ye, Wang Guang-Xue, Deng Xiao-Gang. Aeroacoustic simulation of the high-lift airfoil using hybrid reynolds averaged Navier-Stokes/high-order implicit large eddy simulation method. Acta Physica Sinica, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [9] Li Gao-Hua, Wang Fu-Xin. Evolution characteristic analysis of double-helical vortex wake of high Reynolds number flow. Acta Physica Sinica, 2018, 67(5): 054701. doi: 10.7498/aps.67.20171291
    [10] Ma Ping, Shi An-Hua, Yang Yi-Jian, Yu Zhe-Feng, Liang Shi-Chang, Huang Jie. Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model. Acta Physica Sinica, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [11] Zhang Xin, Huang Yong, Wang Wan-Bo, Tang Kun, Li Hua-Xing. Experimental investigation on the starting vortex induced by symmetrical dielectric barrier discharge plasma actuator. Acta Physica Sinica, 2016, 65(17): 174701. doi: 10.7498/aps.65.174701
    [12] Dong Ya-Bin, Xia Yang, Li Chao-Bo, Lu Wei-Er, Rao Zhi-Peng, Zhang Yang, Zhang Xiang, Ye Tian-Chun. Investigation on the relationship between the properties of atomic layer deposition ZnO film and the dose of precursor. Acta Physica Sinica, 2013, 62(14): 147306. doi: 10.7498/aps.62.147306
    [13] Wei Gang, Wu Ning, Xu Xiao-Hui, Su Xiao-Bing, You Yun-Xiang. Experiments on the generation of internal wavesby a hemispheroid in a linearly stratified fluid. Acta Physica Sinica, 2011, 60(4): 044704. doi: 10.7498/aps.60.044704
    [14] Zhi Rong, Gong Zhi-Qiang. The detection and attribution of the abrupt change of precipitation in China based on the power-law exponent. Acta Physica Sinica, 2008, 57(7): 4629-4633. doi: 10.7498/aps.57.4629
    [15] Zhi Rong, Lian Yi, Feng Guo-Lin. The influence of different scale systems on precipitation analyzed on the basis of power-law exponent. Acta Physica Sinica, 2007, 56(3): 1837-1842. doi: 10.7498/aps.56.1837
    [16] Zhi Rong, Gong Zhi-Qiang, Wang De-Ying, Feng Guo-Lin. Analysis of the spatio-temporal characteristics of precipitation of China based on the power-law exponent. Acta Physica Sinica, 2006, 55(11): 6185-6191. doi: 10.7498/aps.55.6185
    [17] Zuo Zhan-Chun, Xia Yun-Jie. The evolution property of three-body entanglement measure in Tavis-Cummings mode l. Acta Physica Sinica, 2003, 52(11): 2687-2693. doi: 10.7498/aps.52.2687
    [18] Li Jun-Feng, Cao Jin-Xiang, Zhang Chuan-Bao, Song Fa-Lun. . Acta Physica Sinica, 2002, 51(7): 1542-1548. doi: 10.7498/aps.51.1542
    [19] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [20] CHEN SHI-SHENG, A. B?SWALD, R. SIGEL, S. WITKOWSKI. EXPERIMENTS ON THE WAVELENGTH AND INTENSITY DEPENDENCE OF LASER -PLASMA INTERACTION USING HIGH-SPEED SHADOWGRAPHY. Acta Physica Sinica, 1987, 36(11): 1395-1400. doi: 10.7498/aps.36.1395
Metrics
  • Abstract views:  9564
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  01 July 2019
  • Accepted Date:  21 October 2019
  • Published Online:  05 February 2020

/

返回文章
返回