Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground state of three-component Bose-Einstein condensate with helicoidal spin-orbit coupling

LI Ji WANG Huanyu

Citation:

Ground state of three-component Bose-Einstein condensate with helicoidal spin-orbit coupling

LI Ji, WANG Huanyu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The spinor Bose-Einstein condensate (BEC) provides an ideal platform for observing and manipulating topological structures, which arise from the spin degrees of freedom and the superfluid nature of the gas. Artificial helicoidal spin-orbit coupling (SOC) in the spinor BEC, owing to the spatially varying gauge potential and the more flexible adjustability, provides possibly an unprecedented opportunity to search for novel quantum states. The previous studies of the BEC with helicoidal SOC mainly focus on the two-component case. However, there are few reports on the studies of helicoidal SOC in three-component BEC. Especially considering one-dimensional three-component BEC, whether the helicoidal SOC can generate previously unknown types of topological excitations and phase diagrams is still an unsolved problem. In this work, by solving quasi one-dimensional Gross-Pitaevskii equations, we study the ground state structure of one-dimensional helicoidal spin-orbit coupled three-component BEC. The numerical results show that the helicoidal SOC can induce a phase separation among the components in ferromagnetic BEC. Through numerical calculations of the system, a phase diagram is obtained as a function of the helicoidal SOC strength and gauge potential, which shows the critical conditions for phase separation and phase miscibility in ferromagnetic BEC. Meanwhile, we also study the influences of the helicoidal SOC and the gauge potential on the antiferromagnetic BEC ground state. The numerical results show that the helicoidal SOC is beneficial for the miscibility in antiferromagnetic BEC. When the helicoidal SOC strength or gauge potential increases, the ground state of antiferromagnetic BEC exhibits a stripe soliton structure. Adjusting the strength of helicoidal SOC or gauge potential can control the transitions between a plane-wave soliton and a stripe soliton. In addition, we show the changes of the particle number density maximum and the number of peaks of stripe solitons for adjusting the helicoidal SOC strength or gauge potential. Our results show that helicoidal spin-orbit coupled BEC not only provides a controlled platform for investigating the exotic topological structures, but also is crucial for the transitions between different ground states. This work paves the way for exploring the topological defect and the corresponding dynamical stability in quantum systems subjected to the helicoidal SOC in future.
  • 图 1  不同螺旋自旋-轨道耦合强度下铁磁BEC基态, 3个自旋分量的粒子数密度$ {\rho _1} $, $ {\rho _0} $和$ {\rho _{ - 1}} $分别用黑线、红线和蓝线表示 (a) $ \alpha = 0.15 $; (b) $ \alpha = 0.8 $; 其他模拟参数$ \beta = 0.4 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $

    Figure 1.  Ground state of the ferromagnetic BEC for different helicoidal spin-orbit coupling strengths, the particle number densities $ {\rho _1} $, $ {\rho _0} $ and $ {\rho _{ - 1}} $ for the three spin components are depicted by black, red, and blue lines, respectively: (a) $ \alpha = 0.15 $; (b) $ \alpha = 0.8 $; the rest of parameters are $ \beta = 0.4 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $.

    图 2  不同螺旋规范势下铁磁BEC基态, 3个自旋分量的粒子数密度$ {\rho _1} $, $ {\rho _0} $和$ {\rho _{ - 1}} $分别用黑线、红线和蓝线表示 (a) $ \beta = 0.2 $; (b) $ \beta = 0.8 $; 其余模拟参数$ \alpha = 1 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $

    Figure 2.  Ground state of the ferromagnetic BEC for different helicoidal gauge potentials, the particle number densities $ {\rho _1} $, $ {\rho _0} $and $ {\rho _{ - 1}} $ for the three spin components are depicted by black, red, and blue lines, respectively: (a) $ \beta = 0.2 $; (b) $ \beta = 0.8 $; the rest of parameters are $ \alpha = 1 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $.

    图 3  螺旋自旋-轨道耦合铁磁BEC基态相图, 包括相混合和相分离, 其余模拟参数选为$ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $

    Figure 3.  Phase diagram of the ground state of the ferromagnetic BEC with the helicoidal spin-orbit coupling, the phase diagram includes phase miscibility and phase separation, the other parameters are $ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $.

    图 4  (a) 当螺旋自旋-轨道耦合强度$ \alpha $确定时, 粒子数密度$ {\rho _0} $最大值随螺旋规范势$ \beta $的变化; (b) 当螺旋规范势$ \beta $确定时, 粒子数密度$ {\rho _0} $最大值随螺旋自旋-轨道耦合强度$ \alpha $的变化; 其余模拟参数$ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $

    Figure 4.  (a) The particle number density $ {\rho _0} $maximum as a function of helicoidal gauge potential for a given helicoidal spin-orbit coupling strength; (b) the particle number density $ {\rho _0} $ maximum as a function of helicoidal spin-orbit coupling strength for a given helicoidal gauge potential parameter; the other parameters are $ {\lambda _0} = 600 $, $ {\lambda _2} = - 2.76 $.

    图 5  不同螺旋自旋-轨道耦合强度下反铁磁BEC基态, 3个自旋分量的粒子数密度$ {\rho _1} $, $ {\rho _0} $和$ {\rho _{ - 1}} $分别用红线、蓝线和黑线表示 (a) $ \alpha = 0.2 $; (b) $ \alpha = 1.2 $; (c) $ \alpha = 2 $; (d) $ \alpha = 4 $; 其余模拟参数$ \beta = 3 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $

    Figure 5.  Ground state of the antiferromagnetic BEC for different helicoidal spin-orbit coupling strengths, the particle number densities $ {\rho _1} $, $ {\rho _0} $and $ {\rho _{ - 1}} $for the three spin components are depicted by red, blue, and black lines, respectively: (a) $ \alpha = 0.2 $; (b) $ \alpha = 1.2 $; (c) $ \alpha = 2 $; (d) $ \alpha = 4 $; and the other parameters are $ \beta = 3 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $.

    图 6  (a) 当螺旋规范势$ \beta $确定时, 粒子数密度$ {\rho _0} $最大值随螺旋自旋-轨道耦合强度$ \alpha $的变化; (b) 当螺旋规范势$ \beta $确定时, 粒子数密度$ {\rho _0} $波峰数目随螺旋自旋-轨道耦合强度$ \alpha $的变化; 其余模拟参数$ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $

    Figure 6.  (a) The particle number density $ {\rho _0} $maximum as a function of helicoidal spin-orbit coupling strength for a given helicoidal gauge potential; (b) numbers of wave peaks of the particle number density $ {\rho _0} $ as a function of helicoidal spin-orbit coupling strength for a given helicoidal gauge potential; the other parameters are $ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $.

    图 7  不同螺旋规范势下反铁磁BEC基态, 3个自旋分量的粒子数密度$ {\rho _1} $, $ {\rho _0} $和$ {\rho _{ - 1}} $分别用红线、蓝线和黑线表示 (a) $ \beta = 0.4 $; (b) $ \beta = 1.2 $; (c) $ \beta = 2 $; (d) $ \beta = 4 $; 其余模拟参数选为$ \alpha = 2 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $

    Figure 7.  Ground state of the antiferromagnetic BEC for different helicoidal gauge potentials, the particle number densities $ {\rho _1} $, $ {\rho _0} $and $ {\rho _{ - 1}} $ for the three spin components are depicted by red, blue, and black lines, respectively: (a) $ \beta = 0.4 $; (b) $ \beta = 1.2 $; (c) $ \beta = 2 $; (d) $ \beta = 4 $; and the other parameters are $ \alpha = 2 $, $ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $.

    图 8  (a) 当螺旋自旋-轨道耦合强度$ \alpha $确定时, 粒子数密度$ {\rho _0} $最大值随螺旋规范势$ \beta $的变化; (b) 当螺旋自旋-轨道耦合强度$ \alpha $确定时, 粒子数密度$ {\rho _0} $波峰数目随螺旋自旋-轨道耦合强度$ \beta $的变化; 其余模拟参数选为$ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $

    Figure 8.  (a) The particle number density $ {\rho _0} $maximum as a function of helicoidal gauge potential for a given helicoidal spin-orbit coupling strength; (b) numbers of wave peaks of the particle number density $ {\rho _0} $as a function of helicoidal gauge potential for a given helicoidal spin-orbit coupling strength; the other parameters are $ {\lambda _0} = 600 $, $ {\lambda _2} = 24 $.

  • [1]

    Ho T L 1998 Phys. Rev. Lett. 81 742Google Scholar

    [2]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191Google Scholar

    [3]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66 053610Google Scholar

    [4]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66 053604Google Scholar

    [5]

    Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70 043613Google Scholar

    [6]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [7]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402Google Scholar

    [8]

    Seo S W, Kang S J, Kwon W J, Shin Y 2015 Phys. Rev. Lett. 115 015301Google Scholar

    [9]

    Seo S W, Kwon W J, Kang S J, Shin Y 2016 Phys. Rev. Lett. 116 185301Google Scholar

    [10]

    Orlova N V, Kuopanportti P, Milošević M V 2016 Phys. Rev. A 94 023617Google Scholar

    [11]

    Kim K, Hur J, Huh S J, Choi S, Choi J Y 2021 Phys. Rev. Lett. 127 043401Google Scholar

    [12]

    Li S X, Saito H 2024 Phys. Rev. Res. 6 L042049Google Scholar

    [13]

    Ros A R, Katsimiga G C, Mistakidis S I, Mossman S, Biondini G, Schmelcher P, Engels, P, Kevrekidis P G 2024 Phys. Rev. Lett. 132 033402Google Scholar

    [14]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [15]

    Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348 544Google Scholar

    [16]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [17]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10 314Google Scholar

    [18]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [19]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [20]

    Anderson B M, Juzeliúnas G, Galitski V M, Spielman I B 2012 Phys. Rev. Lett. 108 235301Google Scholar

    [21]

    Mithun T, Fritsch A R, Koutsokostas G N, Frantzeskakis D J, Spielman I B, Kevrekidis P G 2024 Phys. Rev. A 109 023328Google Scholar

    [22]

    文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐 2019 物理学报 68 080301Google Scholar

    Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68 080301Google Scholar

    [23]

    Gautam S, Adhikari S K 2014 Phys. Rev. A 90 043619Google Scholar

    [24]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [25]

    Liu C F, Liu W M 2012 Phys. Rev. A 86 033602Google Scholar

    [26]

    李吉, 刘斌, 白晶, 王寰宇, 何天琛 2019 物理学报 69 140301

    Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69 140301

    [27]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401Google Scholar

    [28]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402Google Scholar

    [29]

    李吉, 刘伍明 2018 物理学报 67 110302Google Scholar

    Li J, Liu W M 2018 Acta Phys. Sin. 67 110302Google Scholar

    [30]

    Han W, Juzeliūnas G, Zhang W, Liu W M 2015 Phys. Rev. A 91 013607Google Scholar

    [31]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95 043633Google Scholar

    [32]

    Li J, Zhang X F, Liu W M 2018 Ann. Phys. 396 87Google Scholar

    [33]

    Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118 190401Google Scholar

    [34]

    Yang Y X, Gao P, Wu Z Y, Zhao L C, Yang Z Y 2021 Annals of Physics 431 168562Google Scholar

    [35]

    Yang Y X, Gao P, Zhao L C, Yang Z Y 2022 Front. Phys. 17 32503Google Scholar

    [36]

    Li X X, Cheng R J, Ma J L, Zhang A X, Xue J K 2021 Phys. Rev. E 104 034214Google Scholar

    [37]

    Fang P P, Lin J 2024 Phys. Rev. E 109 064219Google Scholar

    [38]

    Kartashov Y V, Sherman E Y, Malomed B A, Konotop V V 2020 New J. Phys. 22 103014Google Scholar

    [39]

    Li X X, Cheng R J, Ma J L, Zhang A X, Xue J K 2019 Phys. Rev. E 100 032220Google Scholar

    [40]

    Otlaadisa P, Tabi C B, Kofané T C 2021 Phys. Rev. E 103 052206

    [41]

    Fang P P, He J T, Asgari R, Gao X L, Lin J 2023 Eur. Phys. J. Plus 138 482Google Scholar

    [42]

    Chen Y X 2023 Optik - International Journal for Light and Electron Optics 276 170685Google Scholar

    [43]

    Zhang D C, Yang S J 2024 Physica B 674 415528Google Scholar

    [44]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [45]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [46]

    Luo X Y, Wu L N, Chen J Y, Guan Q, Gao K Y, Xu Z F, You L, Wang R Q 2016 Sci. Rep. 6 18983Google Scholar

    [47]

    Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 2006 219 836

    [48]

    Chiquillo E 2018 Phys. Rev. A 97 013614Google Scholar

    [49]

    Tononi A, Wang Y M, Salasnich L 2019 Phys. Rev. A 99 063618Google Scholar

    [50]

    Matuszewski M, Alexander T J, Kivshar Y S 2009 Phys. Rev. A 80 023602Google Scholar

    [51]

    Zhao L C, Luo X W, Zhang C W 2020 Phys. Rev. A 101 023621Google Scholar

    [52]

    Saboo A, Halder S, Das S, Majumder S 2024 Phys. Rev. A 110 033325Google Scholar

    [53]

    张瑞芳, 李禄 2020 量子光学学报 26 33

    Zhang R F, Li L 2020 J. Quantum Opt. 26 33

    [54]

    Petrov D S 2015 Phys. Rev. Lett. 115 155302Google Scholar

    [55]

    Petrov D S, Astrakharchik G E 2016 Phys. Rev. Lett. 117 100401Google Scholar

  • [1] Wang Chang-Chao, Nie Qing-Miao, Shi Liang, Chen Nai-Bo, Hu Lai-Gui, Yan Bo. Kinetic Monte Carlo simulation of selective area growth of mix deposited organic molecules. Acta Physica Sinica, doi: 10.7498/aps.73.20231779
    [2] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, doi: 10.7498/aps.73.20230963
    [3] Wang Jing, Jiao Yang, Tian Wen-De, Chen Kang. Phase separation phenomenon in mixed system composed of low- and high-inertia active particles. Acta Physica Sinica, doi: 10.7498/aps.72.20230792
    [4] Liu Bo-Yang, Song Wen-Tao, Liu Zheng-Hui, Sun Xiao-Juan, Wang Kai-Ming, Wang Ya-Kun, Zhang Chun-Yu, Chen Ke-Bei, Xu Geng-Zhao, Xu Ke, Li Da-Bing. Characterization of phase separation on AlGaN surfaces by in-situ photoluminescence spectroscopy and high spatially resolved surface potential images. Acta Physica Sinica, doi: 10.7498/aps.69.20200099
    [5] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, doi: 10.7498/aps.68.20181891
    [6] Duan Hua, Li Jian-Feng, Zhang Hong-Dong. Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane. Acta Physica Sinica, doi: 10.7498/aps.67.20171740
    [7] Ji Dan-Dan, Zhang Shao-Guang. Phase separation pattern transition of three-domain vesicles. Acta Physica Sinica, doi: 10.7498/aps.67.20180828
    [8] Yang Shao-Peng, Li Na, Li Guang, Shi Jiang-Bo, Li Xiao-Wei, Fu Guang-Sheng. Effect of mixed solvents on P3HT:PCBM based solar cell. Acta Physica Sinica, doi: 10.7498/aps.62.014702
    [9] Ren Qun, Wang Nan, Zhang Li, Wang Jian-Yuan, Zheng Ya-Ping, Yao Wen-Jing. The effects of spinodal decomposition and nucleation on phase separation. Acta Physica Sinica, doi: 10.7498/aps.61.196401
    [10] Yan Guo-Qing, Mao Qiang, Wang Gui-Ying, Guo Huan-Yin, Liu Ning. Research on order phase and second-entering-type spin glass behavior of La0.3Ca0.7Mn1-xVxO3 system. Acta Physica Sinica, doi: 10.7498/aps.59.5759
    [11] Wang Qiang. Charge order and phase separation in Bi0.5Ca0.5Mn1-xCoxO3 system. Acta Physica Sinica, doi: 10.7498/aps.59.6569
    [12] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, doi: 10.7498/aps.58.5604
    [13] Liang Xuan-Wen, Li Liang-Sheng, Hou Zhao-Guo, Lü Zhen, Yang Lei, Sun Gang, Shi Qing-Fan. Cycle of segregation patterns in vertically vibrated binary granular mixtures. Acta Physica Sinica, doi: 10.7498/aps.57.2300
    [14] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, doi: 10.7498/aps.57.7157
    [15] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, doi: 10.7498/aps.57.4660
    [16] Zhai Wei, Wang Nan, Wei Bing-Bo. Direct observation of phase separation in binary monotectic solution. Acta Physica Sinica, doi: 10.7498/aps.56.2353
    [17] Jiang Zhong-Ying, Yu Wei-Zhong, Huang Yan-Jun, Xia Yuan-Fu, Ma Shu-Xin. Phase behavior and thermal dynamic properties of free volume on SMMA/SMA copolymer blend studied by PALS method. Acta Physica Sinica, doi: 10.7498/aps.55.3136
    [18] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, doi: 10.7498/aps.53.3834
    [19] Kuang Hua, Kong Ling-Jiang, Liu Mu-Ren. The study of the effect of delay probability on mixed vehiclessensitive driving traffic flow model. Acta Physica Sinica, doi: 10.7498/aps.53.4138
    [20] Feng Wen-Qiang, Zhu Yue-Jin. The driven-effect of external fluctuation on phase separation of binary mixtures. Acta Physica Sinica, doi: 10.7498/aps.53.3690
Metrics
  • Abstract views:  247
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2025
  • Accepted Date:  30 May 2025
  • Available Online:  08 July 2025
  • /

    返回文章
    返回