-
The spinor Bose-Einstein condensate (BEC) provides an ideal platform to observe and manipulate topological structures, which arise from the spin degrees of freedom and the superfluid nature of the gas. Artificial helicoidal spin-orbit coupling (SOC) in the spinor BEC, owing to the spatially varying gauge potential and the more flexible adjustability, provides possibly an unprecedented opportunity to search for novel quantum states. The previous studies of the BEC with helicoidal SOC are mainly focused on the two-component case. However, there are few reports on the studies of helicoidal SOC in three-component BEC. Especially considering one-dimensional three-component BEC, it remains an open question whether the helicoidal SOC can produce previously unknown types of topological excitations and phase diagrams. In this work, by solving quasi one-dimensional Gross-Pitaevskii equations, we study the ground state structure of one-dimensional helicoidal spin-orbit coupled three-component BEC. The numerical results show that, the helicoidal SOC can induce a phase separation among the components in ferromagnetic BEC. The phase diagram as a function of the helicoidal SOC strength and the gauge potential is obtained through systematic numerical calculations, which shows critical condition for occurring phase separation and for occurring phase miscibility in ferromagnetic BEC. Meanwhile, we also study the influences of the helicoidal SOC and the gauge potential on the antiferromagnetic BEC ground state. The numerical results show that the helicoidal SOC favors miscibility in antiferromagnetic BEC. When the helicoidal SOC strength or gauge potential increases, the ground state of antiferromagnetic BEC exhibits a stripe soliton structure. Adjusting the strength of helicoidal SOC or gauge potential can control the transitions between a plane-wave soliton and a stripe soliton. In addition, we show the changes of the particle number density maximum and the number of peaks of stripe solitons for tuning the helicoidal SOC strength or gauge potential. Our results show that helicoidal spin-orbit coupled BEC not only provide a controlled platform to investigate the exotic topological structures, but also are crucial for the transitions among different ground states. This work paves the way for future explorations of topological defect and the corresponding dynamical stability in quantum systems subjected to the helicoidal SOC.
-
Keywords:
- three-component Bose-Einstein condensate /
- helicoidal spin-orbit coupling /
- phase separation /
- phase miscibility
-
[1] Ho T L 1998 Phys. Rev. Lett. 81742
[2] Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 851191
[3] Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66053610
[4] Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66053604
[5] Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70043613
[6] Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72033611
[7] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101010402
[8] Seo S W, Kang S J, Kwon W J, Shin Y 2015 Phys. Rev. Lett. 115015301
[9] Seo S W,Kwon W J, Kang S J, Shin Y 2016 Phys. Rev. Lett. 116185301
[10] Orlova N V, Kuopanportti P, Milošević M V 2016 Phys. Rev. A 94023617
[11] Kim K, Hur J, Huh S J, Choi S, Choi J Y 2021 Phys. Rev. Lett. 127043401
[12] Li S X, Saito H 2024 Phys. Rev. Res. 6 L042049
[13] Ros A R, Katsimiga G C, Mistakidis S I, Mossman S, Biondini G, Schmelcher P, Engels, P, Kevrekidis P G 2024 Phys. Rev. Lett. 132033402
[14] Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505657
[15] Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348544
[16] Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 47183
[17] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10314
[18] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 35483
[19] Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12540
[20] Anderson B M, Juzeliúnas G, Galitski V M,Spielman I B 2012 Phys. Rev. Lett. 108235301
[21] Mithun T, Fritsch A R, Koutsokostas G N, Frantzeskakis D J, Spielman I B, Kevrekidis P G 2024 Phys. Rev. A 109023328
[22] Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68080301(in Chinese) [文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐2019物理学报68080301]
[23] Gautam S, Adhikari S K 2014 Phys. Rev. A 90043619
[24] Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105160403
[25] Liu C F, Liu W M 2012 Phys. Rev. A 86033602
[26] Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69140301(in Chinese) [李吉, 刘斌, 白晶, 王寰宇, 何天琛2019物理学报69140301]
[27] Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107270401
[28] Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108010402
[29] Li J, Liu W M 2018 Acta Phys. Sin. 67110302(in Chinese) [李吉, 刘伍明2018物理学报67110302]
[30] Han W, Juzeliūnas G, Zhang W, Liu W M 2015 Phys. Rev. A 91013607
[31] Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95043633
[32] Li J, Zhang X F, Liu W M 2018 Annals of Physics 39687
[33] Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118190401
[34] Yang Y X, Gao P, Wu Z Y, Zhao L C, Yang Z Y 2021 Annals of Physics 431168562
[35] Yang Y X, Gao P, Zhao L C, Yang Z Y 2022 Front. Phys. 1732503
[36] Li X X, Cheng R J, Ma J L, Zhang A X, Xue J K 2021 Phys. Rev. E 104034214
[37] Fang P P, Lin J 2024 Phys. Rev. E 109064219
[38] Kartashov Y V, Sherman E Y, Malomed B A, Konotop V V 2020 New J. Phys. 22103014
[39] Li X X, Cheng R J, Ma J L, Zhang A X, Xue J K 2019 Phys. Rev. E 100032220
[40] Otlaadisa P, Tabi C B, Kofané T C 2021 Phys. Rev. E 103052206
[41] Fang P P, He J T, Asgari R, Gao X L, Lin J 2023 Eur. Phys. J. Plus 138482
[42] Chen Y X 2023 Optik - International Journal for Light and Electron Optics 276170685
[43] Zhang D C, Yang S J 2024 Physica B:Condensed Matter 674415528
[44] Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496196
[45] Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114125301
[46] Luo X, Wu L, Chen J, Guan Q, Gao K, Xu Z F, You L, Wang R 2016 Sci. Rep. 618983
[47] Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 2006219836
[48] Chiquillo E 2018 Phys. Rev. A 97013614
[49] Tononi A, Wang Y M, Salasnich L 2019 Phys. Rev. A 99063618
[50] Matuszewski M, Alexander T J, Kivshar Y S 2009 Phys. Rev. A 80023602
[51] Zhao L C, Luo X W, Zhang C W 2020 Phys. Rev. A 101023621
[52] Saboo A, Halder S, Das S, Majumder S 2024 Phys. Rev. A 110033325
[53] Zhang R F, Li L 2020 Journal of Quantum Optics 2633(in Chinese) [张瑞芳, 李禄2020量子光学学报2633]
[54] Petrov D S 2015 Phys. Rev. Lett. 115155302
[55] Petrov D S, Astrakharchik G E 2016 Phys. Rev. Lett. 117100401
Metrics
- Abstract views: 10
- PDF Downloads: 1
- Cited By: 0