Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kinetic Monte Carlo simulation of selective area growth of mix deposited organic molecules

Wang Chang-Chao Nie Qing-Miao Shi Liang Chen Nai-Bo Hu Lai-Gui Yan Bo

Citation:

Kinetic Monte Carlo simulation of selective area growth of mix deposited organic molecules

Wang Chang-Chao, Nie Qing-Miao, Shi Liang, Chen Nai-Bo, Hu Lai-Gui, Yan Bo
PDF
HTML
Get Citation
  • The selective area growth approach (namely the self-assembly of molecules on pre-patterned surfaces) that takes into account the properties of organic molecular materials and traditional lithography techniques, is expected to play a significant role in manufacturing organic micro-nano patterns for photoelectric and full-color display. The manufacture of organic devices with tunable multicolor patterned films depends on the control of nucleation distribution of two or more organic molecules by using a selective area growth approach, particularly through the application of mixed deposition growth that can enhance the nucleation efficiency of multicolor thin films. However, till now the issue of mixed deposition growth of two kinds of organic molecules has been rarely reported, owing to the complexity in experimental operation. In this work, the selective area growth of mixed deposition of two kinds of molecules is studied by molecular kinetic Monte Carlo approach in order to find the experimental conditions for separating two kinds of molecular growth. In the simulation, the interaction energy between the two molecules is adjusted and controlled to study its influence on the separately selective area growth of the two molecules. The results show that when the intermolecular interaction energy is weak, the planar molecules and the non-planar molecules exhibit completely different growth behaviors. The most of non-planar molecules gather at the top of the electrode in an island mode, while planar molecules mainly accumulate in a layer-by-layer mode on the sides of the electrode. On the contrary, when the intermolecular interaction energy is strong, the number of non-planar particles on the tops decreases and a large number of planar particles appear. Moreover, on the sides of the electrode, the doping nucleation of planar molecules and non-planar molecules also exists, resulting in the failure of molecular phase separation growth. It proves that the intermolecular interaction energy can affect separately area-selective growth of various organic molecules. Therefore, when several different kinds of molecules are mixed and deposited, relatively pure crystalline monochromatic films can be obtained at the top and on the sides of the electrode, respectively, by appropriately adjusting the intermolecular interaction energy, which can further facilitate the application of multi-color organic micro-nano pattern in display and other fields.
      Corresponding author: Nie Qing-Miao, nieqingmiao@zjut.edu.cn ; Yan Bo, boyan@zjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074040) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ24D050002).
    [1]

    Shaw J M, Seidler P F 2001 IBM J. Res. Dev. 45 3Google Scholar

    [2]

    Kippelen B, Brédas J L 2009 Energy Enviro. Sci. 2 251Google Scholar

    [3]

    Baek S, Kim K, Sung Y, Jung P, Ju S, Kim W, Kim S J, Hong S H, Lee H 2020 Nanotechnology 31 125301Google Scholar

    [4]

    Tian P F, Bulovic V, Burrows P E, Gu G, Forrest S R, Zhou T X 1999 J. Vac. Sci. Technol. A 17 2975Google Scholar

    [5]

    Saba M H, Mukherjee S, Dutta S, Mallisetty P K, Murmu N C 2021 Mater. Today: Proc. 46 1749Google Scholar

    [6]

    Spiegel I A, Sammons P, Barton K 2020 IEEE Trans. Control Syst. Technol. 28 2322Google Scholar

    [7]

    Wang W C, Chi L F 2012 Acc. Chem. Res. 45 1646Google Scholar

    [8]

    Bardotti L, Prevel B, Jensen P, Treilleux M, Mélinon P, Perez A, Mailly D 2002 Appl. Surf. Sci. 191 205Google Scholar

    [9]

    Wang W C, Zhong D Y, Zhu J, Kalischewski F, Dou R F, Wedeking K, Chi L F 2007 Phys. Rev. Lett. 98 225504Google Scholar

    [10]

    Speth R L, Lauga E 2009 New J. Phys. 11 075024Google Scholar

    [11]

    Hopp S F, Heuer A 2010 J. Chem. Phys. 133 204101Google Scholar

    [12]

    Lied F, Mues T, Wang W C, Chi L F, Heuer A 2012 J. Chem. Phys. 136 024704Google Scholar

    [13]

    Zhang H, Liu G, Wang W C, Chi L F, Yuan S L 2014 RSC Adv. 4 25005Google Scholar

    [14]

    Kotelyanskii M, Theodorou D N 2004 Simulation Methods for Polymers (Boca Raton: CRC Press

    [15]

    Neurock M, Hansen E W 1998 Comput. Chem. Eng. 22 S1045Google Scholar

    [16]

    Liu G, Zhang H, Liu G K, Yuan S L 2016 Colloids Surf. A Physicochem. Eng. Asp. 494 186Google Scholar

    [17]

    Liu G, Zhang H, Liu G K, Yuan S L, Zhu Q Z 2016 Colloids Surf. A Physicochem. Eng. Asp. 509 401Google Scholar

    [18]

    Blel S, Hamouda A B H 2019 Results Phys. 12 1475Google Scholar

    [19]

    Jiang Y, Shi L, Chen N B, Hu L G, Wang W C, Nie Q M, Yan B 2023 Results Phys. 44 106145Google Scholar

    [20]

    Wang W C, Du C, Zhong D Y, Hirtz M, Wang Y, Lu N, Wu L X, Ebeling D, Li L Q, Fuchs H, Chi L F 2009 Adv. Mater. 21 4721Google Scholar

    [21]

    Kalischewski F, Heuer A 2009 Phys. Rev. B 80 155421Google Scholar

    [22]

    Kalischewski F, Zhu J, Heuer A 2008 Phys. Rev. B 78 155401Google Scholar

    [23]

    Klawtanong M, Srinitiwarawong C, Chatraphorn P 2018 Thin Solid Films 645 431Google Scholar

    [24]

    Huitema H E A, van der Eerden J P 1999 J. Chem. Phys. 110 3267Google Scholar

    [25]

    Larsson M I 2001 Phys. Rev. B 64 115428Google Scholar

    [26]

    Michely T, Krug J 2004 Islands, Mounds and Atoms (Vol. 42) (Berlin: Springer

    [27]

    Liu G, Zhang H, Wang W, Yuan S L 2015 Chem. Phys. Lett. 628 54Google Scholar

  • 图 1  (a)模拟系统结构图, 其中大的灰色和小的黄色方块分别代表二氧化硅基底和金电极, 沉积的非平面(平面)粒子用蓝色(红色)的球表示, 衬底的尺寸为80a×80a×2a, 方形电极(20a×20a×4a)以40a的周期布置在基板上, a是晶格常数, 设为1; (b)平面分子的各向异性分子间相互作用的示意图

    Figure 1.  (a) Set-up of the simulation system. The large gray and small yellow squares represent the SiO2 substrate and the gold electrode, respectively. The deposited non-planar (planar) particles are represented by blue (red) balls. The size of the substrate is 80a×80a×2a. Square electrodes (20a×20a×4a) are arranged on the substrate with a 40a period. Here a is the lattice constant and set to 1. (b) Schematic diagram of anisotropic intermolecular interactions of planar molecules.

    图 2  当非平面分子(蓝色)和平面分子(红色)垂直面间(沿着面内方向)结合能为0.4kBT (0.2kBT )时, 预图案表面沉积粒子形貌的截面快照随粒子数的演化 (a) 5000; (b) 15000; (c) 30000; (d) 50000

    Figure 2.  Evolution of the section snapshots of the morphology after (a) 5000, (b) 15000, (c) 30000 and (d) 50000 particles deposited on the surface of the pre-pattern. Here the out-plane (in-plane) interaction energy between the molecules of non-planar (blue) and planar (red) is 0.4kBT (0.2kBT ).

    图 3  当非平面分子和平面分子垂直面间(沿着面内方向)结合能为0.4kBT (0.2kBT )时 (a)非平面分子(平面分子)在电极顶部、侧面的沉积粒子数随入射总粒子数的变化; (b)沉积在电极顶部(侧面)非平面分子(平面分子)的粒子数占顶部(侧面)总粒子数的比率随入射总粒子数的变化

    Figure 3.  (a) Variation of the number of deposited non-planar (planar) particles on (at) the tops (sides) of the electrodes with the number of incident particles; (b) the variation of the ratio of the number of deposited non-planar (planar) particles on (at) the tops (sides) of the electrodes to the total number of particles with the number of incident particles. Here the out-plane (in-plane) interaction energy between the molecules of non-planar and planar is 0.4kBT (0.2kBT ).

    图 4  当非平面分子(蓝色)和平面分子(红色)垂直面间(沿着面内方向)结合能分别为(a) 0.4$ {k}_{{\mathrm{B}}}T $(0.2$ {k}_{{\mathrm{B}}}T $), (b) 1.2$ {k}_{{\mathrm{B}}}T $(0.8$ {k}_{{\mathrm{B}}}T $), (c) 2$ {k}_{{\mathrm{B}}}T $(1.4$ {k}_{{\mathrm{B}}}T $)以及(d) 2.8$ {k}_{{\mathrm{B}}}T $(2$ {k}_{{\mathrm{B}}}T $)时, 预图案表面沉积50000个粒子(非平面分子和平面分子各25000个)的最终形貌的截面快照

    Figure 4.  Section snapshots of the final morphology after 50000 particles deposited on the pre-patterned surface (25000 each for the molecule of non-planar and planar) by varying the out-plane (in-plane) interaction energies between the molecules of non-planar (blue) and planar (red) from (a) 0.4$ {k}_{{\mathrm{B}}}T $(0.2$ {k}_{{\mathrm{B}}}T $), (b) 1.2$ {k}_{{\mathrm{B}}}T $(0.8$ {k}_{{\mathrm{B}}}T $), (c) 2$ {k}_{{\mathrm{B}}}T $(1.4$ {k}_{{\mathrm{B}}}T $) to (d) 2.8$ {k}_{{\mathrm{B}}}T $(2$ {k}_{{\mathrm{B}}}T $).

    图 5  当非平面分子和平面分子垂直面间(沿着面内方向)结合能分别为0.4$ {k}_{{\mathrm{B}}}T $(0.2$ {k}_{{\mathrm{B}}}T $), 1.2$ {k}_{{\mathrm{B}}}T $(0.8$ {k}_{{\mathrm{B}}}T $), 2$ {k}_{{\mathrm{B}}}T $(1.4$ {k}_{{\mathrm{B}}}T $)以及2.8$ {k}_{{\mathrm{B}}}T $(2$ {k}_{{\mathrm{B}}}T $)时, (a)非平面分子在电极顶部、侧面的沉积粒子数随入射粒子总数的变化; (b)沉积在电极顶部(侧面)非平面分子(平面分子)的粒子数占顶部(侧面)总粒子数的比率随入射总粒子数的变化

    Figure 5.  (a) Variation of the number of deposited particles of non-planar on (at) the tops (sides) of the electrodes with the number of incident particles; (b) the variation of the ratio of the number of deposited particles of non-planar (planar) on (at) the tops (sides) of the electrodes to the total number of particles with the number of incident particles. Here the out-plane (in-plane) interaction energy between the molecules of non-planar and planar is 0.4$ {k}_{{\mathrm{B}}}T $(0.2$ {k}_{{\mathrm{B}}}T $), 1.2$ {k}_{{\mathrm{B}}}T $(0.8$ {k}_{{\mathrm{B}}}T $), 2$ {k}_{{\mathrm{B}}}T $(1.4$ {k}_{{\mathrm{B}}}T $) and 2.8$ {k}_{{\mathrm{B}}}T $(2$ {k}_{{\mathrm{B}}}T $), respectively.

  • [1]

    Shaw J M, Seidler P F 2001 IBM J. Res. Dev. 45 3Google Scholar

    [2]

    Kippelen B, Brédas J L 2009 Energy Enviro. Sci. 2 251Google Scholar

    [3]

    Baek S, Kim K, Sung Y, Jung P, Ju S, Kim W, Kim S J, Hong S H, Lee H 2020 Nanotechnology 31 125301Google Scholar

    [4]

    Tian P F, Bulovic V, Burrows P E, Gu G, Forrest S R, Zhou T X 1999 J. Vac. Sci. Technol. A 17 2975Google Scholar

    [5]

    Saba M H, Mukherjee S, Dutta S, Mallisetty P K, Murmu N C 2021 Mater. Today: Proc. 46 1749Google Scholar

    [6]

    Spiegel I A, Sammons P, Barton K 2020 IEEE Trans. Control Syst. Technol. 28 2322Google Scholar

    [7]

    Wang W C, Chi L F 2012 Acc. Chem. Res. 45 1646Google Scholar

    [8]

    Bardotti L, Prevel B, Jensen P, Treilleux M, Mélinon P, Perez A, Mailly D 2002 Appl. Surf. Sci. 191 205Google Scholar

    [9]

    Wang W C, Zhong D Y, Zhu J, Kalischewski F, Dou R F, Wedeking K, Chi L F 2007 Phys. Rev. Lett. 98 225504Google Scholar

    [10]

    Speth R L, Lauga E 2009 New J. Phys. 11 075024Google Scholar

    [11]

    Hopp S F, Heuer A 2010 J. Chem. Phys. 133 204101Google Scholar

    [12]

    Lied F, Mues T, Wang W C, Chi L F, Heuer A 2012 J. Chem. Phys. 136 024704Google Scholar

    [13]

    Zhang H, Liu G, Wang W C, Chi L F, Yuan S L 2014 RSC Adv. 4 25005Google Scholar

    [14]

    Kotelyanskii M, Theodorou D N 2004 Simulation Methods for Polymers (Boca Raton: CRC Press

    [15]

    Neurock M, Hansen E W 1998 Comput. Chem. Eng. 22 S1045Google Scholar

    [16]

    Liu G, Zhang H, Liu G K, Yuan S L 2016 Colloids Surf. A Physicochem. Eng. Asp. 494 186Google Scholar

    [17]

    Liu G, Zhang H, Liu G K, Yuan S L, Zhu Q Z 2016 Colloids Surf. A Physicochem. Eng. Asp. 509 401Google Scholar

    [18]

    Blel S, Hamouda A B H 2019 Results Phys. 12 1475Google Scholar

    [19]

    Jiang Y, Shi L, Chen N B, Hu L G, Wang W C, Nie Q M, Yan B 2023 Results Phys. 44 106145Google Scholar

    [20]

    Wang W C, Du C, Zhong D Y, Hirtz M, Wang Y, Lu N, Wu L X, Ebeling D, Li L Q, Fuchs H, Chi L F 2009 Adv. Mater. 21 4721Google Scholar

    [21]

    Kalischewski F, Heuer A 2009 Phys. Rev. B 80 155421Google Scholar

    [22]

    Kalischewski F, Zhu J, Heuer A 2008 Phys. Rev. B 78 155401Google Scholar

    [23]

    Klawtanong M, Srinitiwarawong C, Chatraphorn P 2018 Thin Solid Films 645 431Google Scholar

    [24]

    Huitema H E A, van der Eerden J P 1999 J. Chem. Phys. 110 3267Google Scholar

    [25]

    Larsson M I 2001 Phys. Rev. B 64 115428Google Scholar

    [26]

    Michely T, Krug J 2004 Islands, Mounds and Atoms (Vol. 42) (Berlin: Springer

    [27]

    Liu G, Zhang H, Wang W, Yuan S L 2015 Chem. Phys. Lett. 628 54Google Scholar

  • [1] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] Wang Jing, Jiao Yang, Tian Wen-De, Chen Kang. Phase separation phenomenon in mixed system composed of low- and high-inertia active particles. Acta Physica Sinica, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [3] Liu Bo-Yang, Song Wen-Tao, Liu Zheng-Hui, Sun Xiao-Juan, Wang Kai-Ming, Wang Ya-Kun, Zhang Chun-Yu, Chen Ke-Bei, Xu Geng-Zhao, Xu Ke, Li Da-Bing. Characterization of phase separation on AlGaN surfaces by in-situ photoluminescence spectroscopy and high spatially resolved surface potential images. Acta Physica Sinica, 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [4] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [5] Duan Hua, Li Jian-Feng, Zhang Hong-Dong. Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane. Acta Physica Sinica, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [6] Ji Dan-Dan, Zhang Shao-Guang. Phase separation pattern transition of three-domain vesicles. Acta Physica Sinica, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [7] Jiang Ying, Chen Jeff Z. Y.. The applications of the wormlike chain model on polymer physics. Acta Physica Sinica, 2016, 65(17): 178201. doi: 10.7498/aps.65.178201
    [8] Xiang Jun-You, Wang Zhi-Guo, Xu Bao, Sun Yun-Bin, Wu Hong-Ye, Zhao Jian-Jun, Lu Yi. Phase separation of bilayered perovskite manganite (La1-xGdx)4/3Sr5/3Mn2 O7 (x=0, 0.05). Acta Physica Sinica, 2014, 63(15): 157501. doi: 10.7498/aps.63.157501
    [9] Ren Qun, Wang Nan, Zhang Li, Wang Jian-Yuan, Zheng Ya-Ping, Yao Wen-Jing. The effects of spinodal decomposition and nucleation on phase separation. Acta Physica Sinica, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [10] Yan Guo-Qing, Mao Qiang, Wang Gui-Ying, Guo Huan-Yin, Liu Ning. Research on order phase and second-entering-type spin glass behavior of La0.3Ca0.7Mn1-xVxO3 system. Acta Physica Sinica, 2010, 59(8): 5759-5765. doi: 10.7498/aps.59.5759
    [11] Wang Qiang. Charge order and phase separation in Bi0.5Ca0.5Mn1-xCoxO3 system. Acta Physica Sinica, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [12] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [13] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [14] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [15] Zhai Wei, Wang Nan, Wei Bing-Bo. Direct observation of phase separation in binary monotectic solution. Acta Physica Sinica, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] Wang Rui-Min, Chen Guang-De, Zhu You-Zhang. Micro-Raman scattering study of hexagonal InGaN epitaxial layer. Acta Physica Sinica, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [17] Jiang Zhong-Ying, Yu Wei-Zhong, Huang Yan-Jun, Xia Yuan-Fu, Ma Shu-Xin. Phase behavior and thermal dynamic properties of free volume on SMMA/SMA copolymer blend studied by PALS method. Acta Physica Sinica, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [18] Liu Xiang-Rong, Wang Nan, Wei Bing-Bo. Rapid growth of Cu-Pb monotectics under containerless condition. Acta Physica Sinica, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [19] Feng Wen-Qiang, Zhu Yue-Jin. The driven-effect of external fluctuation on phase separation of binary mixtures. Acta Physica Sinica, 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [20] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
Metrics
  • Abstract views:  1284
  • PDF Downloads:  33
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2023
  • Accepted Date:  04 April 2024
  • Available Online:  28 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回