Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Perfect non-reciprocal reflection amplification in closed loop coherent gain atomic system

Li Guan-Rong Zheng Yi-Ting Xu Qiong-Yi Pei Xiao-Shan Geng Yue Yan Dong Yang Hong

Citation:

Perfect non-reciprocal reflection amplification in closed loop coherent gain atomic system

Li Guan-Rong, Zheng Yi-Ting, Xu Qiong-Yi, Pei Xiao-Shan, Geng Yue, Yan Dong, Yang Hong
PDF
HTML
Get Citation
  • High-performance non-reciprocal photonic devices can improve the efficiency of optical quantum manipulation, information processing, and quantum simulation effectively. The enhanced optical signal can simultaneously amplify the weak signal output by the quantum system and isolate the sensitive quantum system from the back-scattered external noise, which is the core technology of high-performance photonic devices. In our previous work (2023 Opt. Express 31 38228), we have achieved dynamic control of unidirectional reflection amplification based on four-wave mixing gain and the use of coupling field intensity varying linearly with position. In this work, we design a simple three-level closed loop coherent gain atomic system, setting the intensity of coupling field to be varying with position step shape to break the spatial symmetry of probe susceptibility, and achieving perfect non-reciprocal reflection light amplification. In contrast, the stepped variation of coupling field intensity is easier to adjust in experiment, greatly reducing the difficulty in the experiment. Specifically, the system introduces phase modulation. By changing the phase, the frequency region of probe gain and absorption can be switched, which makes the modulation of reflection amplification more flexible.
      Corresponding author: Yang Hong, yang_hongbj@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204137, 12126314, 12126351), the Hainan Provincial Banyan Tree Foundation, China (Grant Nos. RSYH20231165828X, RSYH20231165827X), and the Innovation Platform for Academicians of Hainan Province, China (Grant Nos. YSPTZX202215, YSPTZX202207).
    [1]

    Hu Y Q, Zhang S C, Qi Y H, Lin G W, Niu Y P, Gong S Q 2019 Phys. Rev. Appl. 12 054004Google Scholar

    [2]

    Shi Y, Yu Z F, Fan S H 2015 Nat. Photonics 9 388Google Scholar

    [3]

    Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [4]

    Shen Z, Zhang Y L, Chen Y, Sun F W, Guo X B, Dong C H 2018 Nat. Commun. 9 1797Google Scholar

    [5]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [6]

    Markelov V A, Novikov M, Turkin A A 1977 JETP Lett. 25 9

    [7]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [8]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [9]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [10]

    Estep N A, Sounas D L, Soric J, Alu A 2014 Nat. Phys. 10 923Google Scholar

    [11]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [12]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [13]

    盖云冉, 郑康, 丁春玲 2024 物理学报 73 014201Google Scholar

    Gai Y R, Zheng K, Ding C L 2024 Acta Phys. Sin. 73 014201Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Xu X W, Li Y, Chen A X, Liu Y X 2016 Phys. Rev. A 93 023827Google Scholar

    [16]

    Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, Painter O 2017 Nat. Phys. 13 465Google Scholar

    [17]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [18]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [19]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [20]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [21]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [22]

    Peng B, Ozdemir S K, Lei F C, Monifi F 2014 Nat. Phys. 10 394Google Scholar

    [23]

    Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [24]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [25]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [26]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473Google Scholar

    [27]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [28]

    Chaung Y L, Shamsi A, Abbas M 2020 Opt. Express 28 1701Google Scholar

    [29]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [30]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [31]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744Google Scholar

    [32]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [33]

    Hu Y, Qi Y, You Y, Zhang S, Lin G, Li X, Niu Y 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [34]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 物理学报 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [35]

    Heras de las A M, Carusotto I 2021 Phys. Rev. A 104 043501Google Scholar

    [36]

    Otterstrom N T, Kittlaus E A, Gertler S, Behunin R O, Lentine A L, Rakich P T 2019 Optica 6 1117Google Scholar

    [37]

    Song L N, Wang Z H, Li Y 2018 Opt. Commun. 415 39Google Scholar

    [38]

    Abdo B, Sliwa K, Shankar S, Hatridge M, Frunzio L, Schoelkopf R, Devoret M 2014 Phys. Rev. Lett. 112 167701Google Scholar

    [39]

    Metelmann A, Clerk A A 2015 Phys. Rev. X 5 021025Google Scholar

    [40]

    Koutserimpas T T, Fleury R 2018 Phys. Rev. Lett. 120 087401Google Scholar

    [41]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020Google Scholar

    [42]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [43]

    Li Y, Huang Y Y, Zhang X Z, Tian L 2017 Opt. Express 25 18907Google Scholar

    [44]

    Jiang C, Song L N, Li Y 2018 Phys. Rev. A. 97 053812Google Scholar

    [45]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [46]

    Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601Google Scholar

    [47]

    Jiang W, Ma Y, Yuan J, Yin G, Wu W, He S 2017 Laser Photonics Rev. 11 1600253Google Scholar

    [48]

    Liu D J, Huang Y, Hu H, Liu L L, Gao D L, Ran L X, Ye D X, Luo Y 2019 IEEE Trans. Antennas Propag. 68 2945Google Scholar

    [49]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [50]

    Geng Y, Pei X, Li G, Lin X, Zhang H, Yan D, Yang H 2023 Opt. Express 31 38228Google Scholar

    [51]

    Artoni M, La Rocca G, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [52]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • 图 1  (a)三能级$ \Lambda $型相干原子系统; (b)耦合场$ {G_{\mathrm{c}}}(x) $随位置阶梯型变化, $ k = 5 $和$ k = 8 $分别对应红色虚线和蓝色实线, 恒定耦合场$ {G_{\mathrm{c}}} = 25{\text{ MHz}} $对应绿色虚点线; (c)耦合场和微波场竖直方向进入介质, 探测场沿水平方向传播的示意图, 介质长度$ L = 8{\text{ μm}} $

    Figure 1.  (a) Three-level $ \Lambda $ model coherent atomic system; (b) the intensity of coupling field $ {G_{\mathrm{c}}}(x) $ varies with position by step, $ k = 5 $ and $ k = 8 $ corresponding to red dashed and blue solid respectively, the constant coupling field $ {G_{\mathrm{c}}} = 25{\text{ MHz}} $ corresponding to green dotted line; (c) diagram of the homogeneous atomic medium illuminated by coupling and microwave fields vertical $ x $ axis, and probe field travels along $ x $ direction, the medium length $ L = 8{\text{ μm}}$.

    图 2  (a) 恒定耦合场$ {G_{\mathrm{c}}} = 25 {\text{MHz}} $时, 各能级粒子数布居随失谐$ {\varDelta _{\text{p}}} $的变化; (b) 阶梯型耦合场$ (k = 8) $时, 各能级粒子数布居随位置的变化; (c), (d) $ \left| 1 \right\rangle $能级与$ \left| 3 \right\rangle $能级粒子数布居差$ {\rho _{11}} - {\rho _{33}} $随位置和失谐的变化以及随位置和相位的变化, 对应阶梯型耦合场$ (k = 8) $. 相关参数: $ \varPhi = {{3\pi } \mathord{\left/ {\vphantom {{3\pi } 2}} \right. } 2} $, $ {N_0} = 3 \times {10^{11}}{\text{ c}}{{\text{m}}^{ - 3}} $, $ {G_{\text{d}}} = 15{\text{ MHz}}, {\text{ }}{G_{\text{p}}} = 0.3{\text{ MHz}} $, $ {\varDelta _{\text{c}}} = 0, {\text{ }}{d_{13}} = 2.0 \times {10^{ - 29}}{\text{ }}{\mathrm{C}} \cdot {\mathrm{m}}, $$ {\text{ }}{\varGamma _{31}} = {\varGamma _{32}} = 6{\text{ MHz}} $

    Figure 2.  (a) Population distribution of each level vs. $ {\varDelta _{\text{p}}} $ with the constant coupling field $ {G_{\mathrm{c}}} = 25{\text{ MHz}} $; (b) population distribution of each level varies with position with stepped coupling field $ (k = 8) $; (c), (d) the population difference $ {\rho _{11}} - {\rho _{33}} $ between level $ \left| 1 \right\rangle $ and level $ \left| 3 \right\rangle $ varies with position $ x $ and detuning $ {\varDelta _{\text{p}}} $ or position $ x $ and relative phase $ \varPhi $ with step coupling field $ (k = 8) $. Other parameters: $ \varPhi = 3\pi /2 $, $ {N_0} = 3 \times {10^{11}}{\text{ c}}{{\text{m}}^{ - 3}} $, $ {G_{\text{d}}} = 15{\text{ MHz}}, {\text{ }}{G_{\text{p}}} = 0.3{\text{ MHz}}, $$ {\varDelta _{\text{c}}} = 0, {\text{ }}{d_{13}} = 2.0 \times {10^{ - 29}}{\text{ }}{\mathrm{C}} \cdot {\mathrm{m}}, {\text{ }}{\varGamma _{31}} = $$ {\varGamma _{32}} = 6{\text{ MHz}} $.

    图 3  (a), (c), (e) 探测场的左右反射率随失谐$ {\varDelta _{\mathrm{p}}} $的变化, 分别对应恒定场$ {G_{\mathrm{c}}} = 25{\text{ MHz}} $, 阶梯型耦合场$ (k = 5) $和$ (k = 8) $; (b), (d), (f) 探测场左右反射率对比度随失谐$ {\varDelta _{\text{p}}} $的变化; 其他参数与图2相同

    Figure 3.  (a), (c), (e) Left and right reflectivity of the probe field vs. detuning $ {\varDelta _{\text{p}}} $, corresponding to constant coupling field $ {G_{\mathrm{c}}} = 25{\text{ MHz}} $, stepped coupling field $ (k = 5) $ and $ (k = 8) $, respectively; (b), (d), (f) the corresponding contrast of left and right reflectivity vs. detuning $ {\varDelta _{\text{p}}} $. Other parameters are the same as in Fig 2.

    图 4  极化率虚部随失谐和相对相位的变化 (a) $ {G_{\text{c}}} = 9{\text{ MHz}} $; (b) $ {G_{\text{c}}} = 16{\text{ MHz}} $; (c) $ {G_{\text{c}}} = 25{\text{ MHz}} $; (d) $ {G_{\text{c}}} = 36{\text{ MHz}} $; 其他参数与图2相同

    Figure 4.  Changes of the imaginary part of the polarizability with the detuning and relative phase: (a) $ {G_{\text{c}}} = 9{\text{ MHz}} $; (b) $ {G_{\text{c}}} = $$ 16{\text{ MHz}} $; (c) $ {G_{\text{c}}} = 25{\text{ MHz}} $; (d) $ {G_{\text{c}}} = 36{\text{ MHz}} $. Other parameters are the same as in Fig. 2.

    图 5  探测场的左右反射率(a), (b)及其对比度(c), (d)随失谐$ {\varDelta _{\text{p}}} $的变化 (a), (c)阶梯型耦合场对应 $ k = 5 $; (b), (d) 阶梯型耦合场对应$ k = 8 $; 相对相位 $ \varPhi = 7\pi /4 $, 其他参数与图2相同

    Figure 5.  (a), (b) Left and right reflectivity of the probe field and (c), (d) their contrast vs. detuning $ {\varDelta _{\text{p}}} $: (a), (c) The stepped coupling field corresponding to $ k = 5 $; (b), (d) the stepped coupling field corresponding to $ k = 8 $. The relative phases $ \varPhi = 7{\text{π }}/4 $, other parameters are the same as in Fig. 2.

  • [1]

    Hu Y Q, Zhang S C, Qi Y H, Lin G W, Niu Y P, Gong S Q 2019 Phys. Rev. Appl. 12 054004Google Scholar

    [2]

    Shi Y, Yu Z F, Fan S H 2015 Nat. Photonics 9 388Google Scholar

    [3]

    Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [4]

    Shen Z, Zhang Y L, Chen Y, Sun F W, Guo X B, Dong C H 2018 Nat. Commun. 9 1797Google Scholar

    [5]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [6]

    Markelov V A, Novikov M, Turkin A A 1977 JETP Lett. 25 9

    [7]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [8]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [9]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [10]

    Estep N A, Sounas D L, Soric J, Alu A 2014 Nat. Phys. 10 923Google Scholar

    [11]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [12]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [13]

    盖云冉, 郑康, 丁春玲 2024 物理学报 73 014201Google Scholar

    Gai Y R, Zheng K, Ding C L 2024 Acta Phys. Sin. 73 014201Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Xu X W, Li Y, Chen A X, Liu Y X 2016 Phys. Rev. A 93 023827Google Scholar

    [16]

    Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, Painter O 2017 Nat. Phys. 13 465Google Scholar

    [17]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [18]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [19]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [20]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [21]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [22]

    Peng B, Ozdemir S K, Lei F C, Monifi F 2014 Nat. Phys. 10 394Google Scholar

    [23]

    Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [24]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [25]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [26]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473Google Scholar

    [27]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [28]

    Chaung Y L, Shamsi A, Abbas M 2020 Opt. Express 28 1701Google Scholar

    [29]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [30]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [31]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744Google Scholar

    [32]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [33]

    Hu Y, Qi Y, You Y, Zhang S, Lin G, Li X, Niu Y 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [34]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 物理学报 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [35]

    Heras de las A M, Carusotto I 2021 Phys. Rev. A 104 043501Google Scholar

    [36]

    Otterstrom N T, Kittlaus E A, Gertler S, Behunin R O, Lentine A L, Rakich P T 2019 Optica 6 1117Google Scholar

    [37]

    Song L N, Wang Z H, Li Y 2018 Opt. Commun. 415 39Google Scholar

    [38]

    Abdo B, Sliwa K, Shankar S, Hatridge M, Frunzio L, Schoelkopf R, Devoret M 2014 Phys. Rev. Lett. 112 167701Google Scholar

    [39]

    Metelmann A, Clerk A A 2015 Phys. Rev. X 5 021025Google Scholar

    [40]

    Koutserimpas T T, Fleury R 2018 Phys. Rev. Lett. 120 087401Google Scholar

    [41]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020Google Scholar

    [42]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [43]

    Li Y, Huang Y Y, Zhang X Z, Tian L 2017 Opt. Express 25 18907Google Scholar

    [44]

    Jiang C, Song L N, Li Y 2018 Phys. Rev. A. 97 053812Google Scholar

    [45]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [46]

    Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601Google Scholar

    [47]

    Jiang W, Ma Y, Yuan J, Yin G, Wu W, He S 2017 Laser Photonics Rev. 11 1600253Google Scholar

    [48]

    Liu D J, Huang Y, Hu H, Liu L L, Gao D L, Ran L X, Ye D X, Luo Y 2019 IEEE Trans. Antennas Propag. 68 2945Google Scholar

    [49]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [50]

    Geng Y, Pei X, Li G, Lin X, Zhang H, Yan D, Yang H 2023 Opt. Express 31 38228Google Scholar

    [51]

    Artoni M, La Rocca G, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [52]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • [1] Li Ruo-Nan, Xue Jing-Jing, Song Dan, Li Xin, Wang Dan, Yang Bao-Dong, Zhou Hai-Tao. Transfer of optical orbital angular momentum under nonreciprocity-reciprocity amplification conversion. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241565
    [2] Wang Zi-Yao, Chen Fu-Jia, Xi Xiang, Gao Zhen, Yang Yi-Hao. Non-reciprocal topological photonics. Acta Physica Sinica, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [3] Liu Ni, Ma Shuo, Liang Jiu-Qing. Nonreciprocal transmission characteristics in double-cavity double-optomechanical system. Acta Physica Sinica, 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [4] Li Xin, Xie Shu-Yun, Li Lin-Fan, Zhou Hai-Tao, Wang Dan, Yang Bao-Dong. All-optical manipulation of two-way multi-channel based on optical nonreciprocity. Acta Physica Sinica, 2022, 71(18): 184202. doi: 10.7498/aps.71.20220506
    [5] Huang Xue-Fei, Su Jie, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Photoelectron holography in tunneling ionization of atoms by counter-rotating two-color elliptically polarized laser field. Acta Physica Sinica, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [6] Zhang Li-Wei, Li Xian-Li, Yang Liu. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Physica Sinica, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [7] Wang Cong, Yang Jing, Pan Xiu-Juan, Cai Gao-Hang, Zhao Wei, Zhang Jing-Yuan, Cui Da-Fu, Peng Qin-Jun, Xu Zu-Yan. Image restoration and enhancement based on phase conjugation of optical parametric amplification. Acta Physica Sinica, 2017, 66(10): 104205. doi: 10.7498/aps.66.104205
    [8] Wu Yang, Xu Zhou, Xie Hong-Quan, Li Zheng-Hong, Ma Qiao-Sheng. Simulation and experimental study of phase characteristics in high-gain relativistic klystron amplifier. Acta Physica Sinica, 2015, 64(8): 084102. doi: 10.7498/aps.64.084102
    [9] Wang Jie, Jia Xin-Hong, Rao Yun-Jiang, Wu Hui-Juan. Phase-sensitive optical time-domain reflectometer based on bi-directional Raman amplification. Acta Physica Sinica, 2013, 62(4): 044212. doi: 10.7498/aps.62.044212
    [10] Huang Hua, Guo Yan-Hua, Jin Xiao, He Hu, Lei Lu-Rong, Luo Xiong, Chang An-Bi, Li Zheng-Hong. Phase investigation on relativistic klystron amplifier. Acta Physica Sinica, 2011, 60(3): 035201. doi: 10.7498/aps.60.035201
    [11] Liu Tao, Gu Wan-Yi, Shi Pei-Ming, Yu Song, Zhang Hua. Broadband tunable pulses in quasi-phase-matched crystal based optical parametric amplification. Acta Physica Sinica, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [12] Yang Ruo-Fu, Yang Ping, Shen Feng. Experimental research on phase detection and correction of two fiber amplifier based on active segmented mirrors. Acta Physica Sinica, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [13] Yang Zhen-Ping, Bian Qing-Quan. Investigation of RF phase jitter in relativistic klystron amplifier. Acta Physica Sinica, 2009, 58(9): 6141-6145. doi: 10.7498/aps.58.6141
    [14] Ma Jing, Zhang Ruo-Bing, Zhang Wei-Li, Wang Qing-Yue. Compensation of group velocity mismatch for optical parametric amplification in BBO type-I phase-matched configuration. Acta Physica Sinica, 2005, 54(6): 2745-2750. doi: 10.7498/aps.54.2745
    [15] Yuan Xian-Zhang, Miao Zhong-Lin. In-situ photo-modulated reflectance study on the interface of Al and GaAs surface quantum well. Acta Physica Sinica, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [16] Guo Shao-Feng, Lu Qi-Sheng, Cheng Xiang-Ai, Zhou Ping, Deng Shao-Yong, Yin Yan. Influence of Stokes component in reflected light on stimulated Brillouin scattering process. Acta Physica Sinica, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
    [17] MIU ZHONG-LIN, CHEN PING-PING, LU WEI, XU WEN-LAN, LI ZHI-FENG, CAI WEI-YING. . Acta Physica Sinica, 2001, 50(1): 111-115. doi: 10.7498/aps.50.111
    [18] WANG XUN-CHUN, QIU XI-JUN, ZHENG LI-PING. INFLUENCE OF RELATIVE PHASE ON THE ENHANCED IONIZATION BEHAVIOUR OF LINEAR MULTIATOMIC MOLECULAR IONS IN TWO-COLOR LASER FIELDS. Acta Physica Sinica, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [19] CHI JIAN-GANG, ZHAO WEN-QIN, LI AI-ZHEN. PHOTOREFLECTANCE SPECTROSCOPY OF MBE GaAs1-x Sbx/GaAs STRAINED LAYER QUANTUM WELL. Acta Physica Sinica, 1989, 38(10): 1710-1716. doi: 10.7498/aps.38.1710
    [20] . Acta Physica Sinica, 1964, 20(8): 817-818. doi: 10.7498/aps.20.817
Metrics
  • Abstract views:  1966
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  11 March 2024
  • Accepted Date:  15 April 2024
  • Available Online:  23 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回