Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

All-optical manipulation of two-way multi-channel based on optical nonreciprocity

Li Xin Xie Shu-Yun Li Lin-Fan Zhou Hai-Tao Wang Dan Yang Bao-Dong

Citation:

All-optical manipulation of two-way multi-channel based on optical nonreciprocity

Li Xin, Xie Shu-Yun, Li Lin-Fan, Zhou Hai-Tao, Wang Dan, Yang Bao-Dong
PDF
HTML
Get Citation
  • Owing to the potential applications in all-optical quantum information processing and quantum optical networks, magnet-free optical non-reciprocity transmission has attracted great interest and has been studied in many fields, such as parity-time-symmetry enhanced nonlinearity, optomechanical systems, photonic crystal, cold atomic Bragg lattices, chiral quantum optics, and hot atoms. In particular, the random thermal motion of hot atoms can be a useful resource to realize optical non-reciprocity. Here in this work, based on the susceptibility-momentum-locking of atomic thermal motion and the strong coupling characteristics of cavities, a magnetic-free optical reciprocity-nonreciprocity transmission conversion scheme is designed and realized through the atom-cavity compound system. Theoretical and experimental analysis show that the coupling field conditions determine the nonreciprocity of the system. Under the action of single traveling-wave field, the nonreciprocity in hot atoms depends on the propagation direction of the coupling field due to the Doppler effect. Therefore, by changing the opening and closing of the opposite coupling field, the two-way single channel optical nonreciprocal transmission based on intracavity electromagnetically induced transparency can be controlled. When the two coupling fields propagate simultaneously in the opposite directions, however, the cavity transmission changes from single-dark-state to double-dark-state peaks, in which the reciprocity outputs depend on the frequency difference between the two coupling fields. By tuning the frequency difference, the two-way multi-channel reciprocal-nonreciprocal transmission regulation based on double dark polar peaks can be realized. The study can be applied to all-optical quantum devices and quantum information processing, such as optical transistors, optical switching and routing, and quantum gate manipulation.
      Corresponding author: Zhou Hai-Tao, zht007@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975102, 11704235), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123437), the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 201901D211166), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2020L0038).
    [1]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [2]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [3]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [4]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [5]

    Ruesink F, Mathew J P, Miri M A, Verhagen E, Alù A 2018 Nat. Commun. 9 1798Google Scholar

    [6]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [7]

    张利巍, 李贤丽, 杨柳 2019 物理学报 68 170701Google Scholar

    Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar

    [8]

    Lépinay L M, Ockeloen-Korppi C F, Malz D, Sillanpää M A 2020 Phys. Rev. Lett. 125 023603Google Scholar

    [9]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [10]

    Ramezani H, Jha P K, Wang Y, Zhang X 2018 Phys. Rev. Lett. 120 043901Google Scholar

    [11]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [12]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [13]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [14]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602Google Scholar

    [15]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [16]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [17]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [18]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [19]

    Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963Google Scholar

    [20]

    Song K S, Im S J, Pae J S, Ri C S, Ho K S, Kim C S, Han Y H 2020 Phys. Rev. B 102 115435Google Scholar

    [21]

    Zhang J X, Zhou H T, Wang D W, Zhu S Y 2011 Phys. Rev. A 83 053841Google Scholar

    [22]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [23]

    Kapale K T, Agarwal G S, Scully M O 2005 Phys. Rev. A 72 052304Google Scholar

    [24]

    Vo C, Riedl S, Baur S, Rempe G, Dürr S 2012 Phys. Rev. Lett. 109 263602Google Scholar

    [25]

    He L Y, Wang T J, Wang C 2016 Opt. Express 24 15429Google Scholar

    [26]

    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 89 033813Google Scholar

    [27]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [28]

    Li R B, Deng L, Hagley E W 2014 Phys. Rev. A 90 063806Google Scholar

    [29]

    Knutson E M, Cross J S, Wyllie S, Glasser R T 2020 Opt. Express 28 22748Google Scholar

    [30]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [31]

    Li S J, Pan X Z, Ren Y, Liu H Z, Yu S, Jing J T 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [32]

    Zhu Y F, Gauthier D J, Morin S E, Wu Q L, Garmichael H J, Mossberg T W 1990 Phys. Rev. Lett. 64 2499Google Scholar

    [33]

    Sheng J T, Xiao M 2013 Laser Phys. Lett. 10 055402Google Scholar

    [34]

    Gripp J, Mielke S L, Orozco L A 1996 Phys. Rev. A 54 R3746Google Scholar

  • 图 1  (a) 实验装置和(b) 实验能级示意图

    Figure 1.  Schematic diagram of experimental setup (a) and energy levels (b).

    图 2  理论模拟注入信号光s1光(红色实线)和s2光(蓝色虚线)的色散 χ'、吸收χ'' 及腔透射谱T 随信号光频率失谐的变化 (a), (b)只有c1光作用时的χ'χ''; (d), (e) 只有c2作用时的χ'χ''; (c), (f) 分别对应只有c1光和只有c2作用时的T. 在计算中参数设置为: (a)—(c)中, $ {\varOmega _{{c_1}}} = 20{\text{ MHz, }}{\varOmega _{{c_2}}} = 0 $; (d)—(f)中, ${\varOmega _{{c_1}}} = 0,\;{\varOmega _{{c_2}}} = 20{\text{ MHz}}$. 其他实验参数为: r = γin = 0.9, γca = 14.4 MHz, γab = 0.3 MHz, L = 526 mm, l = 75 mm, $ {\varDelta _{{c_1}}} = {\varDelta _{{c_2}}} = {\varDelta _{\text{q}}} = 0 $

    Figure 2.  Theoretical plots of the dispersion χ', absorption χ'' and cavity transmission T of the input s1 (red solid lines) and input s2 (blue dashed lines) versus signal frequency detuning: (a), (b) χ' and χ'' for only c1 used; (d), (e) χ' and χ'' for only c2 used; (c), (f) T corresponding to only c1 and only c2 corresponding to panel (a), (b) and (d), (e), respectively. The parameters used in the calculation are $ {\varOmega _{{c_1}}} = 20{\text{ MHz, }}{\varOmega _{{c_2}}} = 0 $ for panel (a)–(c); ${\varOmega _{{c_1}}} = 0{, }~{\varOmega _{{c_2}}} = 20{\text{ MHz}}$for panel (d)–(f). The other parameters are r = γin = 0.9, γca = 14.4 MHz, γab = 0.3 MHz, L = 526 mm, l = 75 mm, $ {\varDelta _{{c_1}}} = {\varDelta _{{c_2}}} = {\varDelta _{\text{q}}} = 0 $.

    图 3  理论模拟了当c1光和c2光同时作用时, 不同频差δcs1光(红色实线)和s2光(蓝色虚线)的色散χ'、吸收χ''及腔透射谱T (a)—(c) δc = 0; (d)—(f) δc = –20 MHz; (g)—(i) δc = –40 MHz. 主要计算参数为$ {\varOmega _{{c_1}}} = {\varOmega _{{c_2}}} = 20{\text{ MHz}} $, 其他参数与图2中的相同

    Figure 3.  Theoretical plots of χ', χ'' and T of the input s1 (red solid lines) and input s2 (blue dashed lines) versus signal frequency detuning for different frequency difference δc when coupling lights c1 and c2 are used simultaneously: (a)–(c) δc = 0; (d)–(f) δc = –20 MHz; (g)–(i) δc = –40 MHz. The parameters used in the calculation are $ {\varOmega _{{c_1}}} = {\varOmega _{{c_2}}} = 20{\text{ MHz}} $, and other parameters are the same as in Fig. 2.

    图 4  (a), (c) 实验测量了只有c1光和c2光作用下的腔透射谱; (b), (d) 当c2光为脉冲光时在原子共振跃迁中心(Δs = 0)的腔透射强度. (1) 代表s1光的腔透射(红色线), (2) 代表s2光的腔透射(蓝色线), (3) 代表c1光强度(灰色线)和(4)代表c2光强度(黑色线). 主要实验参数为$ {P_{{c_1}}} = {P_{{c_2}}} = 10\;{\text{mW}} $, $ {P_{{s_1}}} = {P_{{s_2}}} = 1.5{\text{ mW}} $, TCs = 28.5 °C, $ {\delta _c} = {\varDelta _{{c_1}}} = 0 $

    Figure 4.  (a), (c) Experimental measured cavity transmission for only light c1 (a) and light c2 (c) used. (b), (d) The transmission intensity at the atom resonance center (Δs = 0) when light c2 is as pulsed light. Red curves (1) are the cavity transmission of light s1, blue curves (2) are those of light s2, gray lines (3) and black lines (4) are the intensity of lights c1 and c2, respectively. The main experimental parameters are:$ {P_{{c_1}}} = {P_{{c_2}}} = 10{\text{ mW}} $, $ {P_{{s_1}}} = {P_{{s_2}}} = 1.5{\text{ mW}} $, TCs = 28.5 °C, $ {\delta _c} = {\varDelta _{{c_1}}} = 0 $.

    图 5  实验测量了c1光和c2光同时作用下的腔透射谱, 其中主要实验参量为(a) $ {\varDelta _{{c_1}}} = {\delta _c} = 0 $; (b) $ {\varDelta _{{c_1}}} = 10{\text{ MHz, }}{\delta _c} = - 20{\text{ MHz}} $; (c) $ {\varDelta _{{c_1}}} = 20{\text{ MHz, }}{\delta _c} = - 40{\text{ MHz}} $. 其他参数与图4相同

    Figure 5.  Experimental measured cavity transmission for lights c1 and c2 simultaneously used. The main experimental parameters are: (a) $ {\varDelta _{{c_1}}} = {\delta _c} = 0 $; (b) $ {\varDelta _{{c_1}}} = 10{\text{ MHz, }}{\delta _c} = - 20{\text{ MHz}} $; (c) $ {\varDelta _{{c_1}}} = 20{\text{ MHz, }}{\delta _c} = - 40{\text{ MHz}} $. The other parameters are the same as in Fig. 4.

    表 1  不同δc下双暗态极子峰的输出真值表

    Table 1.  Output truth table of double dark-state peaks under different δc.


    δc = 0δc = –δδc = –2δ
    Δs = –δ(δ)Δs = –2δ(0)Δs = –δ(δ)Δs = –3δΔs = –δΔs =δ
    S1-in001100110011001100110011
    S2-in010101010101010101010101
    S1-out001100000011000000110011
    S2-out010101010000010101010000
    S = S1-out+ S2-out011101010011010101110011
    DownLoad: CSV
  • [1]

    Aplet L J, Carson J W 1964 Appl. Opt. 3 544Google Scholar

    [2]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z, Xiao M 2014 Nat. Photonics 8 524Google Scholar

    [3]

    Buddhiraju S, Song A, Papadakis G T, Fan S H 2020 Phys. Rev. Lett. 124 257403Google Scholar

    [4]

    Estep N A, Sounas D L, Soric J, Alù A 2014 Nat. Phys. 10 923Google Scholar

    [5]

    Ruesink F, Mathew J P, Miri M A, Verhagen E, Alù A 2018 Nat. Commun. 9 1798Google Scholar

    [6]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [7]

    张利巍, 李贤丽, 杨柳 2019 物理学报 68 170701Google Scholar

    Zhang L W, Li X L, Yang L 2019 Acta Phys. Sin. 68 170701Google Scholar

    [8]

    Lépinay L M, Ockeloen-Korppi C F, Malz D, Sillanpää M A 2020 Phys. Rev. Lett. 125 023603Google Scholar

    [9]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P 2017 Nature 541 473Google Scholar

    [10]

    Ramezani H, Jha P K, Wang Y, Zhang X 2018 Phys. Rev. Lett. 120 043901Google Scholar

    [11]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [12]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [13]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [14]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602Google Scholar

    [15]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Volz J, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [16]

    Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, Gong S Q 2018 Nat. Photonics 12 744Google Scholar

    [17]

    Lin G W, Zhang S C, Hu Y Q, Niu Y P, Gong J B, Gong S Q 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [18]

    Hu Y Q, Zhang S C, Kuang X Y, Qi Y H, Lin G W, Gong S Q, Niu Y P 2020 Opt. Express 28 38710Google Scholar

    [19]

    Bliokh K Y, Rodríguez-Fortuño F J, Bekshaev A Y, Kivshar Y S, Nori F 2018 Opt. Lett. 43 963Google Scholar

    [20]

    Song K S, Im S J, Pae J S, Ri C S, Ho K S, Kim C S, Han Y H 2020 Phys. Rev. B 102 115435Google Scholar

    [21]

    Zhang J X, Zhou H T, Wang D W, Zhu S Y 2011 Phys. Rev. A 83 053841Google Scholar

    [22]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [23]

    Kapale K T, Agarwal G S, Scully M O 2005 Phys. Rev. A 72 052304Google Scholar

    [24]

    Vo C, Riedl S, Baur S, Rempe G, Dürr S 2012 Phys. Rev. Lett. 109 263602Google Scholar

    [25]

    He L Y, Wang T J, Wang C 2016 Opt. Express 24 15429Google Scholar

    [26]

    Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X, Zhu S Y 2014 Phys. Rev. A 89 033813Google Scholar

    [27]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [28]

    Li R B, Deng L, Hagley E W 2014 Phys. Rev. A 90 063806Google Scholar

    [29]

    Knutson E M, Cross J S, Wyllie S, Glasser R T 2020 Opt. Express 28 22748Google Scholar

    [30]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [31]

    Li S J, Pan X Z, Ren Y, Liu H Z, Yu S, Jing J T 2020 Phys. Rev. Lett. 124 083605Google Scholar

    [32]

    Zhu Y F, Gauthier D J, Morin S E, Wu Q L, Garmichael H J, Mossberg T W 1990 Phys. Rev. Lett. 64 2499Google Scholar

    [33]

    Sheng J T, Xiao M 2013 Laser Phys. Lett. 10 055402Google Scholar

    [34]

    Gripp J, Mielke S L, Orozco L A 1996 Phys. Rev. A 54 R3746Google Scholar

  • [1] Ge Yun-Ran, Zheng Kang, Ding Chun-Ling, Hao Xiang-Ying, Jin Rui-Bo. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Physica Sinica, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [2] Liu Ni, Ma Shuo, Liang Jiu-Qing. Nonreciprocal transmission characteristics in double-cavity double-optomechanical system. Acta Physica Sinica, 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [3] Zhang Li-Wei, Li Xian-Li, Yang Liu. Optical nonreciprocity with blue-detuned driving in two-cavity optomechanics. Acta Physica Sinica, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [4] Du Jun, Yang Na, Li Jun-Ling, Qu Yan-Chen, Li Shi-Ming, Ding Yun-Hong, Li Rui. Improvement of phase modulation laser Doppler shift measurement method. Acta Physica Sinica, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [5] Lu Zhi-Yu, Ren Yan-Qing, Ba Bin, Wang Da-Ming, Zhang Jie. An improved direct position determination method based on correlation accumulation of short-time signals with variable velocity receivers. Acta Physica Sinica, 2017, 66(2): 020503. doi: 10.7498/aps.66.020503
    [6] Tang Zhi-Ling, Yu Li-Juan, Li Si-Min. Virtual antenna array theory based on high speed mobile communications. Acta Physica Sinica, 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [7] Liao Qing-Hua, Zhang Xuan, Xia Quan, Yu Tian-Bao, Chen Shu-Wen, Liu Nian-Hua. A design for all-optical switch and arbitrary proportion of energy output beam splitter. Acta Physica Sinica, 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [8] Du Jun, Zhao Wei-Jiang, Qu Yan-Chen, Chen Zhen-Lei, Geng Li-Jie. Laser Doppler shift measuring method based on phase modulater and Fabry-Perot interferometer. Acta Physica Sinica, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [9] Zhao Jiang-Nan, Ai Yong, Wang Jing-Fang. A method for temperature inversion in middle-upper atmosphere using FPI without laser calibration and its observational data preliminary analysis. Acta Physica Sinica, 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [10] Gao Zhu-Xiu, Feng Chun-Hua, Yang Xuan-Zong, Huang Jian-Guo, Han Jian-Wei. Research on plasma axial velocity generated by small debris accelerator coaxial gun. Acta Physica Sinica, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [11] Yan Chun-Yan, Zhang Qiu-Ju. Strong monochromatic harmonics generated by the interaction of two counter-propagating pulses with a foil target. Acta Physica Sinica, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [12] Zheng Jia-Jin, Lu Yun-Qing, Li Pei-Li, Chen Tao. All-optical switching effect of the excited state proton transfer molecule 2-(2'-hydroxyphenyl) benzothiazole in different polar solvents. Acta Physica Sinica, 2010, 59(9): 6626-6631. doi: 10.7498/aps.59.6626
    [13] Liu Qi-Ming, He Xuan, Gan Fu-Xi, Qian Shi-Xiong. Ultrafast optical Kerr effect in amorphous chalcogenide films. Acta Physica Sinica, 2009, 58(2): 1002-1006. doi: 10.7498/aps.58.1002
    [14] Cao Long-Gui, Lu Da-Quan, Hu Wei, Yang Ping-Bao, Zhu Ye-Qing, Guo Qi. Interaction between spacial optical solitons in sub-strongly non-local nonlinear media. Acta Physica Sinica, 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [15] Liu Jian-Guo, Kai Gui-Yun, Xue Li-Fang, Zhang Chun-Shu, Liu Yan-Ge, Wang Zhi, Guo Hong-Lei, Li Yan, Sun Ting-Ting, Yuan Shu-Zhong, Dong Xiao-Yi. A all-optical switching based on highly nolinear photonic crystal fiber Sagnac loop mirror. Acta Physica Sinica, 2007, 56(2): 941-945. doi: 10.7498/aps.56.941
    [16] Xu Chao-Bin, Guo Qi. (1+2)D interaction of strong nonlocal optical spatial solitons. Acta Physica Sinica, 2005, 54(11): 5194-5200. doi: 10.7498/aps.54.5194
    [17] Wang Xiao-Sheng, She Wei-Long. The condition for forming a polychromatic light photovoltaic spatial soliton and its application. Acta Physica Sinica, 2003, 52(3): 595-599. doi: 10.7498/aps.52.595
    [18] LIU XUE-MING, ZHANG MING-DE, SUN XIAO-HAN, LIU LIN. A NOVEL ALL-OPTICAL SWITCH BASED ON THE CASCADING OF SECOND-ORDER NONLINEARITY. Acta Physica Sinica, 2001, 50(2): 287-292. doi: 10.7498/aps.50.287
    [19] SHE WEI-LONG, LEE WING-KEE. ALL OPTICAL DOUBLE QUASI-STEADY-STATE SPATIAL SOLITON. Acta Physica Sinica, 2001, 50(5): 886-891. doi: 10.7498/aps.50.886
    [20] Yang Miao, Si Jin-Hai, Wang Yu-Xiao, Li Chun-Fei. . Acta Physica Sinica, 1995, 44(3): 419-426. doi: 10.7498/aps.44.419
Metrics
  • Abstract views:  3982
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2022
  • Accepted Date:  06 May 2022
  • Available Online:  05 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回