Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study on polarization and piezoelectric properties of group substitution regulated lead-free organic perovskite ferroelectrics

Zheng Peng-Fei Liu Zhi-Xu Wang Chao Liu Wei-Fang

Citation:

First principles study on polarization and piezoelectric properties of group substitution regulated lead-free organic perovskite ferroelectrics

Zheng Peng-Fei, Liu Zhi-Xu, Wang Chao, Liu Wei-Fang
PDF
HTML
Get Citation
  • Organic ferroelectrics are desirable for the applications in the field of wearable electronics due to their eco-friendly process-ability, mechanical flexibility, low processing temperatures, and lightweight. In this work, we use five organic groups as substitution for organic cation and study the effects of organic cations on the structural stability, electronic structure, mechanical properties and spontaneous polarization of metal-free perovskite A-NH4-(PF6)3 (A = MDABCO, CNDABCO, ODABCO, NODABCO, SHDABCO) through first-principles calculations. Firstly, the stabilities of the five materials are calculated by molecular dynamics simulations, and the energy values of all systems are negative and stable after 500 fs, which demonstrates the stabilities of the five materials at 300 K. The electronic structure calculation shows that the organic perovskite materials have wide band gap with a value of about 7.05 eV. The valence band maximum (VBM) and Cconduction band minimum (CBM) are occupied by different elements, which is conductive to the separation of electrons and holes. We find that organic cations have an important contribution to the spontaneous polarization of materials, with a contribution rate over 50%. The presence of hydrogen atoms in the substituting groups (MDABCO, ODABCO) enhances the hydrogen bond interaction between the organic cations and ${\rm PF}_6^- $ and increases the displacement of the organic cation, resulting in an increase in the contribution of the polarization of the organic cation to the total polarization. In addition, we observe large piezoelectric strain components, the calculated value of d33 is 36.5 pC/N for CNDABCO-NH4-(PF6)3, 32.3 pC/N for SHNDABCO-NH4-(PF6)3, which is larger than the known value of d33 of MDABCO-NH4-I3(14pC/N). The calculated value of d14 is 57.5 pC/N for ODABCO-NH4-(PF6)3, 27.5 pC/N for NODABCO-NH4-(PF6)3. These components are at a high level among known organic perovskite materials and comparable to many known inorganic crystals. The large value of d14 is found to be closely related to the large value of elastic compliance tensor s44. The analysis of Young’s modulus and bulk’s modulus shows that these organic perovskite materials have good ductility. These results indicate that these organic materials are excellent candidates for future environmentally friendly piezoelectric materials.
      Corresponding author: Liu Wei-Fang, wfliu@tju.edu.cn
    • Funds: Project support by the National Natural Science Foundation of China (Grant No. 51572193).
    [1]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [2]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829Google Scholar

    [3]

    Bechmann R 2005 J. Acoust. Soc. Am. 28 347Google Scholar

    [4]

    Haertling G H 1999 J. Am. Cera. Soc. 82 797Google Scholar

    [5]

    Zhao Y X, Zhu K 2016 Chem. Soc. Rev. 45 655Google Scholar

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [7]

    Peña M A, Fierro J 2001 Chem. Rev. 101 1981Google Scholar

    [8]

    郑隆立, 齐世超, 王春明, 石磊, 2019 物理学报 68 147701Google Scholar

    Zheng L L, Qi S C, Wang C M, Shi L 2019 Acta Phys. Sin. 68 147701Google Scholar

    [9]

    Neaten J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 14111Google Scholar

    [10]

    Lebeugle D, Colson D, Forget A, Viret M 2007 Appl. Phys. Lett. 91 22907Google Scholar

    [11]

    Palkar V R, Kundaliya D C, Malik S K 2003 J. Appl. Phys. 93 4337Google Scholar

    [12]

    Gao W X, Chang L, Ma H, You L, Yin J, Liu J M, Liu Z G, Wang J L, Yuan G L 2015 NPG Asia Mater. 7 e189Google Scholar

    [13]

    Xu W J, Kopyl S, Kholkin A, Rocha J 2019 Coordin. Chem. Rev. 387 398Google Scholar

    [14]

    Nandi P, Topwal D, Park N G, Shin H 2020 J. Phys. D: Appl. Phys. 53 493002Google Scholar

    [15]

    Köhnen E, Jost M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R, Stannowski B, Albrecht S 2019 Sustain. Energ. Fuels 3 1995Google Scholar

    [16]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar

    [17]

    Yang W S, Park B, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [18]

    Yun J S, Park C K, Jeong Y H, Cho J H, Paik J, Yoon S H, Hwang K 2016 Nanomater. Nanotechno. 6 20Google Scholar

    [19]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [20]

    Fu D W, Cai H L, Liu Y M, Ye Q, Zhang W, Zhang Y, Chen X Y, Giovannetti G, Capone M, Li J Y, Xiong R G 2013 Science 339 425Google Scholar

    [21]

    Wang H, Liu H H, Zhang Z Y, Liu Z H, Lv Z L, Li T W, Ju W W, Li H S, Cai X W, Han H 2019 npj Comput. Mater 5 17Google Scholar

    [22]

    Wu H S, Wei S, Chen S W, Pan H C, Pan W P, Huang S, Tsai M, Yang P 2022 Adv. Sci. 9 2105974Google Scholar

    [23]

    Choi H S, Li S N, Park I, Liew W H, Zhu Z Y, Kwon K C, Wang L, Oh I, Zheng S S, Su C L, Xu Q H, Yao K, Pan F, Loh K P 2022 Nat. Commun. 13 794Google Scholar

    [24]

    Sun M J, Zheng C, Gao Y, Johnston A, Najarian A M, Wang P X, Voznyy O, Hoogland S, Sargent E H 2021 Adv. Mater. 33 2006368Google Scholar

    [25]

    Kasel T W, Deng Z Y, Mroz A M, Hendon C H, Butler K T, Canepa P 2019 Chem. Sci. 10 8187Google Scholar

    [26]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Kresse, Hafner 1994 Phys. Review. B 49 14251Google Scholar

    [28]

    Kresse, Hafner 1993 Phys. Review. B 47 558Google Scholar

    [29]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [30]

    Li Z Z, Li Z H, Peng G Q, Shi C, Wang H X, Ding S Y, Wang Q, Liu Z T, Jin Z W 2023 Adv. Mater. 35 2300480Google Scholar

    [31]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 48 4442Google Scholar

    [32]

    Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 47 1651Google Scholar

    [33]

    Wang X M, Yan Y F 2022 arXiv: 2206.11137v1 [cond-mat. mtrl-sci]

    [34]

    Singh J, Kaur H, Singh G, Tripathi S K 2021 Mater. Today Energy 21 100820Google Scholar

    [35]

    Al-Qaisi S, Rai D P, Haq B U, Ahmed R, Vu T V, Khuili M, Tahir S A, Alhashim H H 2021 Mater. Chem. Phys. 258 123945Google Scholar

    [36]

    Kiely E, Zwane R, Fox R, Reilly A M, Guerin S 2021 CrystEngComm 23 5697Google Scholar

    [37]

    Mouhat F, Coudert F 2014 Phys. Rev. B 90 224104Google Scholar

    [38]

    Haid S, Bouadjemi B, Houari M, Matougui M, Lantri T, Bentata S, Aziz Z 2019 Solid State Commun. 294 29Google Scholar

    [39]

    Birch F 1938 J. Appl. Phys. 9 279Google Scholar

    [40]

    Kholil M I, Bhuiyan M T H 2020 Solid State Commun. 322 114053Google Scholar

    [41]

    Crisler D F, Cupal J J, Moore A R 1968 P. IEEE 56 225Google Scholar

    [42]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191Google Scholar

    [43]

    Joffe H, Berlincourt D, Krueger H, Shiozawa L 1960 14th Annual Symposium on Frequency Control Atlantic City, NJ, USA May 21–June 2 1960 p19

    [44]

    Vanderbilt D, Hamann D R, Wu X F 2005 Phys. Rev. B 72 35105Google Scholar

    [45]

    X Y H 1991 Ferroelectric Materials and Their Applications (Netherlands: Amsterdam

    [46]

    Li F L, Tian S W, Wu G D, Jiang C, Wu F P, Zhao X 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China, November 1–4, 2019 p1

    [47]

    Guy I L, Muensit S, Goldys E M 1999 Appl. Phys. Lett. 75 4133Google Scholar

    [48]

    Irzhak D, Roshchupkin D, Fahrtdinov R 2012 Proceedings of ISAF-ECAPD-PFM 2012 Aveiro, Portugal, July 9–13 2012 p1

  • 图 1  甲基替换H原子打破阳离子对称性

    Figure 1.  Replacing H atoms with methyl groups to break cation symmetry.

    图 2  (a) MDABCO2+, ${\mathrm{NH}}_4^+ $, ${\text{PF}}_6^ - $结构示意图; (b) 沿a轴观察的MDABCO-NP3的原胞; (c) 不同基团取代之后的阳离子; (d) MDABCO-NP3的原胞; (e)沿着[111]方向观察到的MDABCO-NP3的原胞; (f) 沿a轴观察的MDABCO-NP3的晶胞

    Figure 2.  (a) Structures of MDABCO2+, ${\mathrm{NH}}_4^+ $, ${\text{PF}}_6^ - $ components; (b) the primitive cell of MDABCO-NP3 viewed along the a-axis; (c) cations substituted with different functionalities; (d) the primitive cell of MDABCO-NP3; (e) the primitive cell of MDABCO-NP3 viewed along [111] direction; (f) the unit cell of MDABCO-NP3 viewed along a-axis.

    图 3  (a) A-NP3的结合能; (b) A-NP3在300 K条件下的分子动力学模拟

    Figure 3.  (a) Binding energy of A-NP3; (b) molecular dynamics simulation of A-NP3 under 300 K conditions.

    图 4  (a) 5种材料的总态密度; (b)—(f)分别为NODABCO-NP3, SHDABCO-NP3, ODABCO-NP3, CNDABCO-NP3, MDABCO-NP3的投影态密度 ; 费米能级设置为0 eV

    Figure 4.  (a) Total density of states for A-NP3; (b)–(f) projected density of states of (b) NODABCO-NP3, (c) SHDABCO-NP3, (d) ODABCO-NP3, (e) CNDABCO-NP3, (f) MDABCO-NP3. Fermi level is set to zero.

    图 5  R3到+R3结构的转变过程 (a) –R3铁电相 (λ = –1)结构; (b)中间相变结构(λ =0); (c) +R3铁电相(λ = 1)结构; (d) 类反铁电($ {\lambda }' = -1$)结构

    Figure 5.  Transformation of –R3 to +R3 structure: (a) –R3 ferroelectric phase (λ = –1) structure; (b) intermediate phase transition structure (λ = 0); (c) +R3 ferroelectric phase (λ = 1) structure; (d) quasi-antiferroelectric phase structure ($ {\lambda }' =-1$).

    图 6  计算的(a) MDABCO-NP3, (b) SHDABCO-NP3, (c) NODABCO-NP3, (d) ODABCO- NP3, (e) CNDABCO-NP3的经极化量子数修正的和未修正的极化值; (f) 5种材料总的极化值

    Figure 6.  Calculated polarization value of (a) MDABCO-NP3, (b) SHDABCO-NP3, (c) NODABCO-NP3, (d) ODABCO-NP3, (e) CNDABCO-NP3 with and without correction for polarization quantum; (f) the total polarization values of five materials.

    图 7  体系的差分电荷密度 (a) MDABCO-NP3; (b) SHDABCO-NP3; (c) NODABCO-NP3; (d) OHDABCO-NP3; (e) CNDABCO-NP3

    Figure 7.  Differential charge density distribution of differ systems: (a) MDABCO-NP3; (b) SHDABCO-NP3; (c) NODABCO-NP3; (d) OHDABCO-NP3; (e) CNDABCO-NP3.

    图 8  计算的 A-NP3的(a) 压电应变张量和(b) 压电应力张量

    Figure 8.  Calculated piezoelectric strain (a) and stress (b) tensor of A-NP3.

    表 1  采用PBE和PBE+D3方法优化后的A-NP3的晶格结构参数

    Table 1.  Structural optimization of A-NP3 by using PBE and PBE+D3 methods.

    Material Method a α/(°) V3
    MDABCO-NP3 PBE 7.89(0.57%) 84.91(0.06%) 485.51
    PBE+D3 7.73(–1.46%) 84.55(–0.36%) 478.25
    Exp 7.84 84.86 496.46
    SHDABCO-NP3 PBE 7.93 83.84 489.86
    PBE+D3 7.74 83.18 483.46
    NODABCO-NP3 PBE 7.95 83.74 493.15
    PBE+D3 7.84 81.25 485.65
    ODABCO-NP3 PBE 7.85 85.2 478.75
    PBE+D3 7.75 83.65 475.21
    CNDABCO-NP3 PBE 10.58 85.21 477.19
    PBE+D3 9.28 83.48 486.48
    DownLoad: CSV

    表 2  A位阳离子的极化PA (μC/cm2)和材料的总极化PS (μC/cm2)及阳离子的极化对总极化的贡献PA/PS

    Table 2.  Polarization of A-site cations (PA) and total polarization of materials (PS) and the contribution of cation polarization to total polarization (PA/PS).

    Materials PA PS PA/PS
    SHDABCO-NP3 2.4 3.8 0.64
    NODABCO-NP3 2.6 4.2 0.63
    ODABCO-NP3 4.3 6.0 0.71
    MDABCO-NP3 4.3 6.3 0.68
    CNDABCO-NP3 5.7 9.4 0.61
    DownLoad: CSV

    表 3  计算的A-NP3的弹性刚度张量Cij、体积模量B、剪切模量G、杨氏模量E (GPa)、皮尤比(B/G)和泊松比$ \nu $

    Table 3.  Calculated elastic tensor coefficients Cij , bulk modulu B, shear modulu G, Young’s modulu E(GPa), Pugh’s and Poisson’s ratios of A-NP3.

    Materials C11 C33 C44 C12 C13 C14 C25 B G E B/G ν
    MDABCO-NP3 32.9 15.9 8.2 15.9 16.3 0.8 0.1 21.4 8.2 21.8 2.6 0.3
    ODABCO-NP3 21.9 7.2 6.7 7.2 14.4 0.2 0.4 18.4 3.6 10.2 2.8 0.3
    CNDABCO-NP3 35.2 19.4 6.6 19.4 22.8 0.6 1.3 25.7 6.7 18.4 4.0 0.4
    SHDABCO-NP3 32.4 21.8 8.6 21.8 24.1 4.8 4.4 25.9 7.3 20.1 4.1 0.4
    NODABCO-NP3 36.2 19.7 4.4 19.7 19.7 0.3 0.4 25.0 5.9 16.5 4.5 0.4
    DownLoad: CSV

    表 7  代表性无机、有机压电体对CNDABCO-NP3和SHDABCO-NP3的压电分量d33的对比.

    Table 7.  Comparison of piezoelectric component d33 of representative inorganic, organic piezoelectrics to CNDABCO-NP3 and SHDABCO-NP3.

    Materialsd33/(pC·N–1)
    ZnS[41]3.2
    LiNbO3, LN[42]6.0
    CdS[43]10.3
    ZnO[44]12.4
    MDABCO-NI3[19]14.4
    CNDABCO-NP336.5
    SHDABCO-NP332.3
    DownLoad: CSV

    表 8  代表性无机、有机压电体对MDABCO-NP3, NODABCO-NP3 和ODABCO-NP3的压电分量d14的对比

    Table 8.  Comparison of piezoelectric component d14 of representative inorganic, organic piezoelectrics to MDABCO-NP3, NODABCO-NP3 and ODABCO-NP3.

    Materialsd14/(pC·N–1)
    NaClO3[45]1.7
    La3Ga5.5Ta0.5O14, LGT[46]5.0
    GaN[47]6.4
    AlN[47]9.7
    Ca3TaGa3Si2O14, CTGS[48]24.3
    MDABCO-NP36.3
    NODABCO-NP327.5
    ODABCO-NP357.5
    DownLoad: CSV

    表 4  A-NP3的压电应变张量dij (pC/N)

    Table 4.  Piezoelectric strain tensor dij of A-NP3 (pC/N).

    Materialsd11d22d33d14d15d31
    MDABCO-NP3–2.9–2.62.0–6.3–1.03.0
    ODABCO-NP3–5.5–0.97.4–57.5–28.90.9
    CNDABCO-NP3–1.3–2.736.5–7.9–1.617.0
    SHDABCO-NP3–18.2–20.932.3–10.6–41.627.2
    NODABCO-NP3–0.8–0.47.127.5–21.86.18
    DownLoad: CSV

    表 5  A-NP3的压电应力张量eij (C/m2)

    Table 5.  Piezoelectric stress tensor eij of A-NP3 (C/m2).

    Materialse11e22e33e14e15e31
    MDABCO-NP3–3.5–3.02.44.5–0.64.9
    ODABCO-NP3–2.1–0.53.58.1–1.79.9
    CNDABCO-NP3–1.9–4.734.74.7–0.89.7
    SHDABCO-NP3–5.2–6.67.34.3–21.96.5
    NODABCO-NP3–1.6–0.510.58.9–10.716.8
    DownLoad: CSV

    表 6  A-NP3的柔性刚度张量sij (10–12 m/N).

    Table 6.  Elastic compliance tensor sij of A-NP3 (10–12 m/N).

    Materials s11 s33 s44 s12 s13 s14 s25
    MDABCO-NP3 48.8 49.8 130.3 –16.8 –16.7 3.2 0.6
    ODABCO-NP3 38.4 57.2 247.3 –9.0 –17.6 18 45.5
    CNDABCO-NP3 56.9 85.4 157.3 –8.8 –35.7 –5.5 13.3
    SHDABCO-NP3 124.7 142.4 218.9 –37.0 –79.2 –60.1 5.0
    NODABCO-NP3 46.8 51.2 199.0 –16.6 –17.2 17.1 19.9
    DownLoad: CSV
  • [1]

    Kieslich G, Sun S J, Cheetham A K 2014 Chem. Sci. 5 4712Google Scholar

    [2]

    Sessolo M, Bolink H J 2011 Adv. Mater. 23 1829Google Scholar

    [3]

    Bechmann R 2005 J. Acoust. Soc. Am. 28 347Google Scholar

    [4]

    Haertling G H 1999 J. Am. Cera. Soc. 82 797Google Scholar

    [5]

    Zhao Y X, Zhu K 2016 Chem. Soc. Rev. 45 655Google Scholar

    [6]

    Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar

    [7]

    Peña M A, Fierro J 2001 Chem. Rev. 101 1981Google Scholar

    [8]

    郑隆立, 齐世超, 王春明, 石磊, 2019 物理学报 68 147701Google Scholar

    Zheng L L, Qi S C, Wang C M, Shi L 2019 Acta Phys. Sin. 68 147701Google Scholar

    [9]

    Neaten J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 14111Google Scholar

    [10]

    Lebeugle D, Colson D, Forget A, Viret M 2007 Appl. Phys. Lett. 91 22907Google Scholar

    [11]

    Palkar V R, Kundaliya D C, Malik S K 2003 J. Appl. Phys. 93 4337Google Scholar

    [12]

    Gao W X, Chang L, Ma H, You L, Yin J, Liu J M, Liu Z G, Wang J L, Yuan G L 2015 NPG Asia Mater. 7 e189Google Scholar

    [13]

    Xu W J, Kopyl S, Kholkin A, Rocha J 2019 Coordin. Chem. Rev. 387 398Google Scholar

    [14]

    Nandi P, Topwal D, Park N G, Shin H 2020 J. Phys. D: Appl. Phys. 53 493002Google Scholar

    [15]

    Köhnen E, Jost M, Morales-Vilches A B, Tockhorn P, Al-Ashouri A, Macco B, Kegelmann L, Korte L, Rech B, Schlatmann R, Stannowski B, Albrecht S 2019 Sustain. Energ. Fuels 3 1995Google Scholar

    [16]

    Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C 2018 Nat. Mater. 17 820Google Scholar

    [17]

    Yang W S, Park B, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [18]

    Yun J S, Park C K, Jeong Y H, Cho J H, Paik J, Yoon S H, Hwang K 2016 Nanomater. Nanotechno. 6 20Google Scholar

    [19]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [20]

    Fu D W, Cai H L, Liu Y M, Ye Q, Zhang W, Zhang Y, Chen X Y, Giovannetti G, Capone M, Li J Y, Xiong R G 2013 Science 339 425Google Scholar

    [21]

    Wang H, Liu H H, Zhang Z Y, Liu Z H, Lv Z L, Li T W, Ju W W, Li H S, Cai X W, Han H 2019 npj Comput. Mater 5 17Google Scholar

    [22]

    Wu H S, Wei S, Chen S W, Pan H C, Pan W P, Huang S, Tsai M, Yang P 2022 Adv. Sci. 9 2105974Google Scholar

    [23]

    Choi H S, Li S N, Park I, Liew W H, Zhu Z Y, Kwon K C, Wang L, Oh I, Zheng S S, Su C L, Xu Q H, Yao K, Pan F, Loh K P 2022 Nat. Commun. 13 794Google Scholar

    [24]

    Sun M J, Zheng C, Gao Y, Johnston A, Najarian A M, Wang P X, Voznyy O, Hoogland S, Sargent E H 2021 Adv. Mater. 33 2006368Google Scholar

    [25]

    Kasel T W, Deng Z Y, Mroz A M, Hendon C H, Butler K T, Canepa P 2019 Chem. Sci. 10 8187Google Scholar

    [26]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Kresse, Hafner 1994 Phys. Review. B 49 14251Google Scholar

    [28]

    Kresse, Hafner 1993 Phys. Review. B 47 558Google Scholar

    [29]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [30]

    Li Z Z, Li Z H, Peng G Q, Shi C, Wang H X, Ding S Y, Wang Q, Liu Z T, Jin Z W 2023 Adv. Mater. 35 2300480Google Scholar

    [31]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 48 4442Google Scholar

    [32]

    Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 47 1651Google Scholar

    [33]

    Wang X M, Yan Y F 2022 arXiv: 2206.11137v1 [cond-mat. mtrl-sci]

    [34]

    Singh J, Kaur H, Singh G, Tripathi S K 2021 Mater. Today Energy 21 100820Google Scholar

    [35]

    Al-Qaisi S, Rai D P, Haq B U, Ahmed R, Vu T V, Khuili M, Tahir S A, Alhashim H H 2021 Mater. Chem. Phys. 258 123945Google Scholar

    [36]

    Kiely E, Zwane R, Fox R, Reilly A M, Guerin S 2021 CrystEngComm 23 5697Google Scholar

    [37]

    Mouhat F, Coudert F 2014 Phys. Rev. B 90 224104Google Scholar

    [38]

    Haid S, Bouadjemi B, Houari M, Matougui M, Lantri T, Bentata S, Aziz Z 2019 Solid State Commun. 294 29Google Scholar

    [39]

    Birch F 1938 J. Appl. Phys. 9 279Google Scholar

    [40]

    Kholil M I, Bhuiyan M T H 2020 Solid State Commun. 322 114053Google Scholar

    [41]

    Crisler D F, Cupal J J, Moore A R 1968 P. IEEE 56 225Google Scholar

    [42]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191Google Scholar

    [43]

    Joffe H, Berlincourt D, Krueger H, Shiozawa L 1960 14th Annual Symposium on Frequency Control Atlantic City, NJ, USA May 21–June 2 1960 p19

    [44]

    Vanderbilt D, Hamann D R, Wu X F 2005 Phys. Rev. B 72 35105Google Scholar

    [45]

    X Y H 1991 Ferroelectric Materials and Their Applications (Netherlands: Amsterdam

    [46]

    Li F L, Tian S W, Wu G D, Jiang C, Wu F P, Zhao X 2019 Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China, November 1–4, 2019 p1

    [47]

    Guy I L, Muensit S, Goldys E M 1999 Appl. Phys. Lett. 75 4133Google Scholar

    [48]

    Irzhak D, Roshchupkin D, Fahrtdinov R 2012 Proceedings of ISAF-ECAPD-PFM 2012 Aveiro, Portugal, July 9–13 2012 p1

  • [1] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-Qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of magnetic Janus materials based on machine learning and first-principles calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] Lü Cheng-Ye, Chen Ying-Wei, Xie Mu-Ting, Li Xue-Yang, Yu Hong-Yu, Zhong Yang, Xiang Hong-Jun. First-principles calculation method for periodic system under external electromagnetic field. Acta Physica Sinica, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] Wang Qi, Tang Fa-Wei, Hou Chao, Lü Hao, Song Xiao-Yan. First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries. Acta Physica Sinica, 2019, 68(7): 077101. doi: 10.7498/aps.68.20190056
    [5] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [7] Wu Kong-Ping, Qi Jian, Peng Bo, Tang Kun, Ye Jian-Dong, Zhu Shun-Ming, Gu Shu-Lin. Polarization properties of wurtzite structure Zn1-xMgxO and band offset at Zn0.75Mg0.25O/ZnO interfaces: A GGA+U investigation. Acta Physica Sinica, 2015, 64(18): 187304. doi: 10.7498/aps.64.187304
    [8] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [9] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [10] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [11] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [12] Sun Zhuan-Lan, Zhang Xiao-Qing, Cao Gong-Xun, Wang Xue-Wen, Xia Zhong-Fu. Preparation and piezoelectricity of fluorocarbon polymer piezoelectret films with ordered void structure. Acta Physica Sinica, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [13] Zhang Xiao-Qing, Huang Jin-Feng, Wang Xue-Wen, Xia Zhong-Fu. Piezoelectricity of laminated polymer films made of nonporous fluoroethylene and porous polytetrafluoroethylene layers. Acta Physica Sinica, 2009, 58(5): 3525-3531. doi: 10.7498/aps.58.3525
    [14] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [15] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [16] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [17] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [18] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wang Fei-Peng, Wu Xian-Yong. Influence of charging parameters on piezoelectricity for cellular PP film electrets. Acta Physica Sinica, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [19] Qiu Xun-Lin, Xia Zhong-Fu, An Zhen-Lian, Wu Xian-Yong. The piezoelectricity of heat-expanded PP cellular electret. Acta Physica Sinica, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [20] Zhang Peng-Feng, Xia Zhong-Fu, Qiu Xun-Lin, Wu Xian-Yong. The measurement of piezoelectric coefficient for PP cellular electret and the improvement of its piezoelectricity. Acta Physica Sinica, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
Metrics
  • Abstract views:  1752
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2024
  • Accepted Date:  02 April 2024
  • Available Online:  24 April 2024
  • Published Online:  20 June 2024

/

返回文章
返回