- 
				In a tungsten-based alloy system, the appropriate solute elements are selected to produce strong segregation effect to reduce the interfacial formation energy, which can effectively improve the mechanical property and thermal stability of the system. Based on the first principles calculation, the solute segregation model of tungsten-based alloys is constructed. The W-In alloy is taken for example to study the grain boundary segregation behavior and bonding characteristics of solute at different concentrations. The bonding of the W-In system is revealed from the electronic structure, and the variation of the interface stability of the W-In system with the solute concentration is predicted. Based on the electronic structure analysis of bond population, differential charge density and density of states, the bond transition characteristics of solute atoms in the W-In system in the segregation process are found, and the microscopic mechanism of the W-In bond transitioning from the ionic bond inside the grain to the strong covalent bond in the grain boundary region is elucidated: the difference between the grain boundary and the intragranular structure leads to a decrease in the valence state of the W atom in the grain boundary and the oxidizability is weakened, eventually leading to the W-In bond transition. The non-monotonic variation of the intrinsic segregation energy of the solute with the concentration of In in the W-In system is obtained. The mechanism of the influence of solute concentration on the intrinsic segregation energy is revealed by analyzing the bond interaction and energy: the solute concentration remarkably affects the bond strength before and after the W-In bond segregation, resulting in a significant decrease in the segregation ability when the solute concentration is close to 0.0976, and finally the variation of the segregation energy with solute concentration is obtained. Based on the analysis of the phase mechanical stability and the solute segregation in the grain boundary, without considering the vacancy concentration, the optimal solute concentration range and the range that needs to be circumvented in the W-In alloy system with high thermal stability are predicted by the calculations of the model, which are 0.106−0.125 and 0.0632−0.106, respectively. This study provides theoretical basis and quantitative guidance for designing and preparing the tungsten-based alloy materials with high thermal stability.[1] Zhou X Q, Li S K, Liu J X, Wang Y C, Wang X 2010 Mater. Sci. Eng. A 527 4881  Google Scholar Google Scholar[2] Scapin M 2015 Int. J. Refract. Met. Hard Mater. 50 258  Google Scholar Google Scholar[3] Nguyen Manh D, Muzyk M, Kurzydlowski K J, Baluc N L, Rieth M, Dudarev S L 2011 Key Eng. Mater. 465 15  Google Scholar Google Scholar[4] Tschopp M A, Murdoch H A, Kecskes L J, Darling K A 2014 JOM 66 1000 [5] Posthill J B, Hogwood M C, Edmonds D V 1986 Powder Metall. 29 45 [6] Gul H, Uysal M, Çetinkaya T, Guler M O, Alp A, Akbulut H 2014 Int. J. Hydrogen Energ. 39 21414  Google Scholar Google Scholar[7] Millett P C, Selvam R P, Saxena A 2007 Acta Mater. 55 2329  Google Scholar Google Scholar[8] Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309  Google Scholar Google Scholar[9] Song X, Zhang J, Li L, Yang K, Liu G 2006 Acta Mater. 54 5541  Google Scholar Google Scholar[10] Liu F, Kirchheim R 2004 Scr. Mater. 51 521  Google Scholar Google Scholar[11] Liu F, Kirchheim R 2004 J. Cryst. Growth 264 385  Google Scholar Google Scholar[12] Liu F, Yang G, Kirchheim R 2004 J. Cryst. Growth 264 392  Google Scholar Google Scholar[13] Liu F, Kirchheim R 2004 Thin Solid Films 466 108  Google Scholar Google Scholar[14] Darling K A, Vanleeuwen B K, Koch C C, Scattergood R O 2010 Mater. Sci. Eng. A 527 3572  Google Scholar Google Scholar[15] Chookajorn T, Murdoch H A, Schuh C A 2012 Science 337 951  Google Scholar Google Scholar[16] Kawazoe Y 2001 Mater. Design 22 61  Google Scholar Google Scholar[17] Bond A D, Solanko K A, Jacco V D S, Neumann M A 2011 CrystEngComm 13 1768  Google Scholar Google Scholar[18] Braithwaite J S, Rez P 2005 Acta Mater. 53 2715  Google Scholar Google Scholar[19] Yamaguchi M, Kaburaki H, Shiga M 2004 J. Phys.:Condens. Matter 16 3933  Google Scholar Google Scholar[20] Reza M, Laws K J, Nikki S, Michael F 2018 Acta Mater. 158 257  Google Scholar Google Scholar[21] Wu X, You Y W, Kong X S, Chen J L, Luo G N, Lu G H, Liu C S, Wang Z 2016 Acta Mater. 120 315  Google Scholar Google Scholar[22] 孟凡顺, 李久会, 赵星 2014 物理学报 23 237102  Google Scholar Google ScholarMeng F, Li J H, Zhao X 2014 Acta Phys. Sin. 23 237102  Google Scholar Google Scholar[23] Tang F, Liu X, Wang H, Hou C, Lu H, Nie Z, Song X 2019 Nanoscale 11 1813  Google Scholar Google Scholar[24] Scheiber D, Pippan R, Puschnig P, Ruban A, Romaner L 2016 Int. J. Refract. Met. Hard Mater. 60 75  Google Scholar Google Scholar[25] Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717  Google Scholar Google Scholar[26] Vanderbilt D 1990 Phys. Rev. B 41 7892  Google Scholar Google Scholar[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865  Google Scholar Google Scholar[28] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566  Google Scholar Google Scholar[29] Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233  Google Scholar Google Scholar[30] Scheiber D, Razumovskiy V I, Puschnig P, Pippan R, Romaner L 2015 Acta Mater. 88 180  Google Scholar Google Scholar[31] Zdanuk E J, Krock R H 1969 US Patent 3 423 203 [32] Chelikowsky J R, Cohen M L 1976 Phys. Rev. B 14 556  Google Scholar Google Scholar[33] Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112  Google Scholar Google Scholar[34] Asta M, Wolverton C, Ozoliņš V 2004 Phys. Rev. B 69 144109  Google Scholar Google Scholar
- 
				
    
    
表 1 不同溶质浓度下的W-In体系弹性常数计算结果 Table 1. Calculation results of elastic constants of W-In system at different solute concentrations. GPa 溶质浓度 C11 C12 C44 C11 – C12 C11 + 2C12 0 501.5 203.4 127.2 298.1 908.3 0.0625 488.0 201.7 140.0 246.3 2128.5 0.125 364.5 222.3 143.9 220.6 809.1 0.25 208.0 245.9 138.6 –37.9 699.8 
- 
				
[1] Zhou X Q, Li S K, Liu J X, Wang Y C, Wang X 2010 Mater. Sci. Eng. A 527 4881  Google Scholar Google Scholar[2] Scapin M 2015 Int. J. Refract. Met. Hard Mater. 50 258  Google Scholar Google Scholar[3] Nguyen Manh D, Muzyk M, Kurzydlowski K J, Baluc N L, Rieth M, Dudarev S L 2011 Key Eng. Mater. 465 15  Google Scholar Google Scholar[4] Tschopp M A, Murdoch H A, Kecskes L J, Darling K A 2014 JOM 66 1000 [5] Posthill J B, Hogwood M C, Edmonds D V 1986 Powder Metall. 29 45 [6] Gul H, Uysal M, Çetinkaya T, Guler M O, Alp A, Akbulut H 2014 Int. J. Hydrogen Energ. 39 21414  Google Scholar Google Scholar[7] Millett P C, Selvam R P, Saxena A 2007 Acta Mater. 55 2329  Google Scholar Google Scholar[8] Hirouchi T, Takaki T, Tomita Y 2010 Int. J. Mech. Sci. 52 309  Google Scholar Google Scholar[9] Song X, Zhang J, Li L, Yang K, Liu G 2006 Acta Mater. 54 5541  Google Scholar Google Scholar[10] Liu F, Kirchheim R 2004 Scr. Mater. 51 521  Google Scholar Google Scholar[11] Liu F, Kirchheim R 2004 J. Cryst. Growth 264 385  Google Scholar Google Scholar[12] Liu F, Yang G, Kirchheim R 2004 J. Cryst. Growth 264 392  Google Scholar Google Scholar[13] Liu F, Kirchheim R 2004 Thin Solid Films 466 108  Google Scholar Google Scholar[14] Darling K A, Vanleeuwen B K, Koch C C, Scattergood R O 2010 Mater. Sci. Eng. A 527 3572  Google Scholar Google Scholar[15] Chookajorn T, Murdoch H A, Schuh C A 2012 Science 337 951  Google Scholar Google Scholar[16] Kawazoe Y 2001 Mater. Design 22 61  Google Scholar Google Scholar[17] Bond A D, Solanko K A, Jacco V D S, Neumann M A 2011 CrystEngComm 13 1768  Google Scholar Google Scholar[18] Braithwaite J S, Rez P 2005 Acta Mater. 53 2715  Google Scholar Google Scholar[19] Yamaguchi M, Kaburaki H, Shiga M 2004 J. Phys.:Condens. Matter 16 3933  Google Scholar Google Scholar[20] Reza M, Laws K J, Nikki S, Michael F 2018 Acta Mater. 158 257  Google Scholar Google Scholar[21] Wu X, You Y W, Kong X S, Chen J L, Luo G N, Lu G H, Liu C S, Wang Z 2016 Acta Mater. 120 315  Google Scholar Google Scholar[22] 孟凡顺, 李久会, 赵星 2014 物理学报 23 237102  Google Scholar Google ScholarMeng F, Li J H, Zhao X 2014 Acta Phys. Sin. 23 237102  Google Scholar Google Scholar[23] Tang F, Liu X, Wang H, Hou C, Lu H, Nie Z, Song X 2019 Nanoscale 11 1813  Google Scholar Google Scholar[24] Scheiber D, Pippan R, Puschnig P, Ruban A, Romaner L 2016 Int. J. Refract. Met. Hard Mater. 60 75  Google Scholar Google Scholar[25] Segall M D, Lindan P J D, Probert M J 2002 J. Phys.:Condens. Matter 14 2717  Google Scholar Google Scholar[26] Vanderbilt D 1990 Phys. Rev. B 41 7892  Google Scholar Google Scholar[27] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865  Google Scholar Google Scholar[28] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566  Google Scholar Google Scholar[29] Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233  Google Scholar Google Scholar[30] Scheiber D, Razumovskiy V I, Puschnig P, Pippan R, Romaner L 2015 Acta Mater. 88 180  Google Scholar Google Scholar[31] Zdanuk E J, Krock R H 1969 US Patent 3 423 203 [32] Chelikowsky J R, Cohen M L 1976 Phys. Rev. B 14 556  Google Scholar Google Scholar[33] Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112  Google Scholar Google Scholar[34] Asta M, Wolverton C, Ozoliņš V 2004 Phys. Rev. B 69 144109  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 17890
- PDF Downloads: 148
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							



 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							