Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of Co and Ni excess effects on crystal structure and phase stability of Co2NiGa alloy

Zhou Jin-Ping Li Chun-Mei Jiang Bo Huang Ren-Zhong

Citation:

First-principles study of Co and Ni excess effects on crystal structure and phase stability of Co2NiGa alloy

Zhou Jin-Ping, Li Chun-Mei, Jiang Bo, Huang Ren-Zhong
PDF
HTML
Get Citation
  • Using the first-principles exact muffin-tin orbital method combined with the coherent potential approximation, the crystal structure and site occupation, martensitic transformation, magnetic moment and elastic constant for each of Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys with Co and Ni excess at 0 K are systematically investigated. It is shown that most of the austenitic phases of the alloys have XA stable structure, and the excess Co and Ni atoms occupy the insufficient atomic positions, and it is inversely occupied only when Ni replaces Ga. With the increase of x, the total electron energy of L10 relative to XA of only two Ga-insufficient alloys gradually decreases, for the former, the tetragonal shear elastic constant gradually increases, but for the latter, it gradually decreases. It is indicated that the martensitic transformation is promoted by the substitution of both Co and Ni for Ga in the energy and mechanics, and the martensitic transformation temperature is expected to increase. The values of total magnetic moment (μtot) of the XA phase and L10 phase of each alloy are mainly contributed by Co atoms, but onlya relatively small portion by Ni atoms. And the values of μtot of two phases in the four alloys have the same relationship with x, and the difference between them with the same compositions is not more than about 0.32 μB . The analyses of electronic structure calculations show that the distributions of spin-down electronic density of states of Co and Ni atoms near the Fermi energy level have contributed significantly to the stability of L10 relative to the XA phase, which is attributed to the Jahn-Teller effect. The above results are expected to provide a theoretical reference for the optimal design of the structure and properties of Co2NiGa-based ternary alloys.
      Corresponding author: Li Chun-Mei, cmli@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174269, 11674233, 51301176) and the Education Department Foundation of Liaoning Province, China (Grant No. LJKMZ20221472).
    [1]

    Heusler F 1903 Verh. Dtsch. Phys. Ges. 5 219

    [2]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393Google Scholar

    [3]

    Ahmad A, Guchhait S, Ahmad H, Srivastava S K, Das A K 2019 International Conference on Advances in Basic Sciences Bahal, India, February 07–09, 2019 p090006

    [4]

    XU X, Nagasako M, Ito W, Umetsu R Y, Kanomata T, Kainuma R 2013 Acta Mater. 61 6712Google Scholar

    [5]

    杜音, 王文洪, 张小明, 刘恩克, 吴光恒 2012 物理学报 61 147304Google Scholar

    Du Y, Wang W H, Zhang X M, Liu E K, Wu G H 2012 Acta Phys. Sin. 61 147304Google Scholar

    [6]

    Kierstead H A, Dunlap B D, Malik S K, Umarji A M, Shenoy G K 1985 Phys. Rev. B 32 135Google Scholar

    [7]

    Terada M, Fujita Y, Endo K 1974 J. Phys. Soc. Jpn. 36 620Google Scholar

    [8]

    Li Y, Xin Y, Chai L, Ma Y Q, Xu H B 2010 Acta Mater. 58 3655Google Scholar

    [9]

    Guezlane M, Baaziz H, Hassan F E H, Charifi C, Djaballah Y 2016 J. Magn. Magn. Mater. 414 219Google Scholar

    [10]

    Planes A, Mañosa L, Acet M 2009 J. Phys. :Condens. Matter 21 233201Google Scholar

    [11]

    Chabungbam S, Borgohain P, Ghosh S, Singh N, Sahariah M B 2016 J. Alloys Compd. 689 199Google Scholar

    [12]

    Shreder E I, Lukoyanov A V, Makhnev A A, Baglasov E D, Suresh K G 2019 Phys. Met. Metall. 120 729Google Scholar

    [13]

    Sokolovskiy V, Miroshkina O N, Sanosyan A, Baigutlin D, Buchelnikov V, Gruner M E 2022 J. Magn. Magn. Mater. 546 168728Google Scholar

    [14]

    Pereira M J, Santos T, Correia R, Amaral J S, Amaral V S, Fabbrici S, Albertini F 2021 J. Magn. Magn. Mater. 538 168283Google Scholar

    [15]

    Yan S M, Pu J, Chi B, Li J 2011 Chin. Sci. Bull. 56 796Google Scholar

    [16]

    Craciunescu C, Kishi Y, Lograsso T A, Wuttig M 2002 Scr. Mater. 47 285Google Scholar

    [17]

    Biswas C, Rawat R, Barman S R 2005 Appl. Phys. Lett. 86 202508Google Scholar

    [18]

    Li C M, Yang S J, Zhou J P 2022 Chin. Phys. B 31 056105Google Scholar

    [19]

    Siewert M, Gruner M E, Hucht A, Herper H C, Dannenberg A, Chakrabarti A, Singh N, Arróyave R, Entel P 2012 Adv. Eng. Mater. 14 530Google Scholar

    [20]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703Google Scholar

    [21]

    Roy T, Pandey D, Chakrabarti A 2016 Phys. Rev. B 93 184102Google Scholar

    [22]

    Vitos L, Abrilsosv I A, Johansson B 2001 Phys. Rev. Lett. 87 156401Google Scholar

    [23]

    Gyorff B L 1972 Phys. Rev. B 5 2382Google Scholar

    [24]

    Bain E C 1924 Trans. Am. Inst. Min. Metall. Eng. 70 25

    [25]

    Cao P Y, Tian F Y, Li W, Vitos L, Wang Y D 2021 Acta Mater. 210 116816Google Scholar

    [26]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London: Spring-Verlag) pp98–121

    [27]

    Li C M, Zhang Y, Feng W J, Huang R Z, Gao M 2020 Phys. Rev. B 101 054106Google Scholar

    [28]

    胡岩菲 2020 硕士学位论文 (沈阳: 沈阳师范大学)

    Hu Y F 2020 M. S. Thesis (Shenyang: Shangyang Normal University) (in Chinese)

    [29]

    杨顺杰, 李春梅, 周金萍 2022 物理学报 71 106201Google Scholar

    Yang S J, Li C M, Zhou J P 2022 Acta Phys. Sin. 71 106201Google Scholar

    [30]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Materials Science Forum (Switzerland: Trans Tech Publications) p1

    [32]

    Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A, Entel P 2010 Phys. Rev. B 82 064420Google Scholar

    [33]

    Eleno L T F, Chivukula A, Arróyave R, Schön C G 2010 TOFA 2010-Discusion Meeting on Thermodynamics of Alloys Porto, Portugual, September 14, 2010

    [34]

    Olivos E, Miranda A L, Singh N, Arróyave R, Romero A H 2012 Ann. Phys. 524 212Google Scholar

    [35]

    Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y, Garay A 2010 Acta Mater. 58 5220Google Scholar

    [36]

    Li Q S, Liang Z Y, Sun K C, Luo H Z 2019 Comput. Mater. Sci. 168 11Google Scholar

    [37]

    Matsushita Y I, Madjarova G, Dewhurst J K, Shallcross S, Felser C, Sharma S, Gross E K U 2017 J. Phys. D:Appl. Phys. 50 095002Google Scholar

    [38]

    Talapatra A, Arróyave R, Entel P, Valencia-Jaime I, Romero A H 2015 Phys. Rev. B 92 054107Google Scholar

    [39]

    Bai J, Liu D, Huang R K, Zhang Z Y, Yang Y, Gu J L, Yan H L, Zhao X, Zuo L 2020 Mater. Today Commun. 22 100810Google Scholar

    [40]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar

    [41]

    Ghosh S, Ghosh S 2019 Phys. Rev. B 99 064112Google Scholar

    [42]

    Shi X Y, Gao R R, Li J Q, Lu T Y, Luo H Z 2022 J. Magn. Magn. Mater. 547 168815Google Scholar

    [43]

    Singh N, Dogan E, Karaman I, Arróyave R 2011 Phys. Rev. B 84 184201Google Scholar

  • 图 1  Co2NiGa合金晶体结构图 (a)奥氏体相; (b)马氏体相

    Figure 1.  Crystal structures of Co2NiGa alloy: (a) Austenitic phase; (b) martensitic phase.

    图 2  L21-和XA-Co2NiGa合金Etotrws的变化关系, 及四组非化学计量比合金平衡体积下$\Delta E_{{\text{tot}}}^{X\text-L} \text{-} x$关系 (a) Etot; (b) $\Delta E_{{\text{tot}}}^{X\text-L}$

    Figure 2.  Etot of L21- and XA-Co2NiGa alloys change with respect to rws, together with the trends of $\Delta E_{{\text{tot}}}^{X{\text{-}}L} \text{-} x$ of the four off-stoichiometric alloys at equilibrium volume: (a) Etot; (b) $\Delta E_{{\text{tot}}}^{X\text-L}$.

    图 3  L21-和XA-Co2NiGa合金Etot (单位: Ry)随四方晶格c/arws的变化关系图 (a) L21-Co2NiGa; (b) XA-Co2NiGa

    Figure 3.  Etot (in Ry) of L21- and XA-Co2NiGa alloys change with respect to the tetragonal lattice c/a and rws: (a) L21-Co2NiGa; (b) XA-Co2NiGa.

    图 4  XA-Co2+xNi1–xGa和Co2+xNiGa1–x (0 ≤ x ≤ 0.4)合金Etotc/a的变化关系 (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x

    Figure 4.  Etot of XA-Co2+xNi1–xGa and Co2+xNiGa1–x (0 ≤ x ≤ 0.4) alloys change with respect to c/a: (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x

    图 5  XA-Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金Etotc/a的变化关系 (a) Co2–xNi1+xGa; (b) Co2Ni1+xGa1–x

    Figure 5.  Etot of XA-Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys change with respect to c/a: (a) Co2–xNi1+xGa; (b) Co2Ni1+xGa1–x.

    图 6  四组非化学计量比合金两相各原子的磁矩以及μtotx的变化关系 (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x; (c) Co2–xNi1+xGa; (d) Co2Ni1+xGa1–x

    Figure 6.  x-dependence of the magnetic moments for each atom in both phases and the μtot of the four off-stoichiometric alloys: (a) Co2+xNi1–xGa; (b) Co2+xNiGa1–x; (c) Co2–xNi1+xGa; (d) Co2Ni1+xGa1–x.

    图 7  XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金的C44C′以及四组合金L10相的Csx的变化关系 (a) C44; (b) C' and Cs

    Figure 7.  x-dependence of both C44 and C' of the XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys and Cs of the four alloys with L10 phase: (a) C44; (b) C' and Cs.

    图 8  XA-和L10-Co2NiGa合金电子总态密度(DOS), CoI和CoII, Ni, Ga原子的局域DOS对比 (a) Tot; (b) CoI and CoII; (c) Ni; (d) Ga

    Figure 8.  Total electron density of states (DOS) and local DOS corresponding to CoI and CoII, Ni, Ga atoms of XA- and L10-Co2NiGa alloys: (a) Tot; (b) CoI and CoII; (c) Ni; (d) Ga.

    表 1  XA-Co2.2Ni0.8Ga, Co2.2NiGa0.8, Co1.8Ni1.2Ga和Co2Ni1.2Ga0.8合金在铁磁和非自旋极化下各原子占位的∆Etot$ \Delta {E'_{{\text{tot}}}} $, 及它们在铁磁状态下的体积和μtot的理论值

    Table 1.  Etot and $ \Delta {E'_{{\text{tot}}}} $ for respective site occupations of the ferromagnetic and non-spin-polarized XA-Co2.2Ni0.8Ga, Co2.2NiGa0.8, Co1.8Ni1.2Ga and Co2Ni1.2Ga0.8 alloys, together with their theoretical values of the volume and μtot in the ferromagnetic state.

    AlloysSite occupancy∆Etot/mRy$ \Delta {E'_{{\text{tot}}}} $/mRyV/(Å3·atom–1)μtot/μB
    Co2.2Ni0.8GaCo2(Ni0.8Co0.2)Ga0011.7063.064
    Co2(Ni0.8Ga0.2)(Ga0.8Co0.2)5.3955.56811.8013.356
    Co2.2NiGa0.8Co2Ni(Ga0.8Co0.2)0011.6303.488
    Co2(Ni0.8Co0.2)(Ga0.8Ni0.2)0.6880.21111.6243.402
    Co1.8Ni1.2Ga(Co0.8Ni0.2)CoNiGa0011.7002.539
    Co(Co0.8Ni0.2)NiGa0.3170.68111.7102.559
    (Co0.8Ga0.2)CoNi(Ga0.8Ni0.2)2.4411.95311.7482.569
    Co(Co0.8Ga0.2)Ni(Ga0.8Ni0.2)5.7915.79811.8552.798
    Co2Ni1.2Ga0.8Co2Ni(Ga0.8Ni0.2)0011.6073.167
    (Co0.8Ni0.2)CoNi(Ga0.8Co0.2)–1.023–0.61711.6483.253
    Co(Co0.8Ni0.2)Ni(Ga0.8Co0.2)–0.717–0.15311.6153.255
    DownLoad: CSV

    表 2  XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa和Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4)合金的e/a、体积和电子密度, 以及L10相对应的体积和c/a的EMTO计算结果

    Table 2.  The e/a, volume and electron density of the XA-Co2+xNi1–xGa, Co2+xNiGa1–x, Co2–xNi1+xGa and Co2Ni1+xGa1–x (0 ≤ x ≤ 0.4) alloys, and the corresponding volume and c/a of L10 by EMTO calculations.

    Alloyse/aXAL10
    V3n–3V3c/a
    Co2NiGa7.011.7060.59811.6291.260
    11.650[32]0.601[32]11.550[32]
    Co2.1Ni0.9Ga6.911.7090.59011.6301.254
    Co2.2Ni0.8Ga6.811.7060.58111.6301.248
    Co2.3Ni0.7Ga6.711.7000.57311.6281.242
    Co2.4Ni0.6Ga6.611.6940.56411.6271.236
    Co2.1NiGa0.97.611.6610.65211.5791.282
    Co2.2NiGa0.88.211.6300.70511.5251.305
    Co2.3NiGa0.78.811.4940.76611.4661.326
    Co2.4NiGa0.69.411.4580.82011.4051.344
    Co1.9Ni1.1Ga7.111.7100.60611.6341.260
    Co1.8Ni1.2Ga7.211.7000.61511.6351.263
    Co1.7Ni1.3Ga7.311.6980.62411.6361.266
    Co1.6Ni1.4Ga7.411.6910.63311.6371.269
    Co2Ni1.1Ga0.97.711.6600.66011.5801.284
    Co2Ni1.2Ga0.88.411.6480.72111.5251.306
    Co2Ni1.3Ga0.79.111.4450.79511.4671.327
    Co2Ni1.4Ga0.69.811.4390.85711.4051.346
    DownLoad: CSV

    表 3  L21-和XA-Co2NiGa合金的单晶弹性常数(C11, C12, C44C' = (C11 C12)/2)、多晶剪切弹性模量G和杨氏模量E的EMTO计算结果与理论参考值的对比

    Table 3.  Single crystal elastic constants (C11, C12, C44 and C' = (C11 C12)/2), polycrystalline shear elastic modulus G and Young’s modulus E of the L21- and XA-Co2NiGa alloys calculated by EMTO are in comparison with the theoretical reference values.

    AlloysSite occupancyMethodsC11/GPaC12/GPaC44/GPaC'/GPaG/GPaE/GPa
    Co2NiGaL21EMTO194.20172.68136.7210.7655.20150.22
    PAW[38]181186141–2.552139
    PAW[39]166.96150.50111.258.2349.44134.15
    XAEMTO176.29182.55110.91–3.1328.5681.40
    DownLoad: CSV
  • [1]

    Heusler F 1903 Verh. Dtsch. Phys. Ges. 5 219

    [2]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393Google Scholar

    [3]

    Ahmad A, Guchhait S, Ahmad H, Srivastava S K, Das A K 2019 International Conference on Advances in Basic Sciences Bahal, India, February 07–09, 2019 p090006

    [4]

    XU X, Nagasako M, Ito W, Umetsu R Y, Kanomata T, Kainuma R 2013 Acta Mater. 61 6712Google Scholar

    [5]

    杜音, 王文洪, 张小明, 刘恩克, 吴光恒 2012 物理学报 61 147304Google Scholar

    Du Y, Wang W H, Zhang X M, Liu E K, Wu G H 2012 Acta Phys. Sin. 61 147304Google Scholar

    [6]

    Kierstead H A, Dunlap B D, Malik S K, Umarji A M, Shenoy G K 1985 Phys. Rev. B 32 135Google Scholar

    [7]

    Terada M, Fujita Y, Endo K 1974 J. Phys. Soc. Jpn. 36 620Google Scholar

    [8]

    Li Y, Xin Y, Chai L, Ma Y Q, Xu H B 2010 Acta Mater. 58 3655Google Scholar

    [9]

    Guezlane M, Baaziz H, Hassan F E H, Charifi C, Djaballah Y 2016 J. Magn. Magn. Mater. 414 219Google Scholar

    [10]

    Planes A, Mañosa L, Acet M 2009 J. Phys. :Condens. Matter 21 233201Google Scholar

    [11]

    Chabungbam S, Borgohain P, Ghosh S, Singh N, Sahariah M B 2016 J. Alloys Compd. 689 199Google Scholar

    [12]

    Shreder E I, Lukoyanov A V, Makhnev A A, Baglasov E D, Suresh K G 2019 Phys. Met. Metall. 120 729Google Scholar

    [13]

    Sokolovskiy V, Miroshkina O N, Sanosyan A, Baigutlin D, Buchelnikov V, Gruner M E 2022 J. Magn. Magn. Mater. 546 168728Google Scholar

    [14]

    Pereira M J, Santos T, Correia R, Amaral J S, Amaral V S, Fabbrici S, Albertini F 2021 J. Magn. Magn. Mater. 538 168283Google Scholar

    [15]

    Yan S M, Pu J, Chi B, Li J 2011 Chin. Sci. Bull. 56 796Google Scholar

    [16]

    Craciunescu C, Kishi Y, Lograsso T A, Wuttig M 2002 Scr. Mater. 47 285Google Scholar

    [17]

    Biswas C, Rawat R, Barman S R 2005 Appl. Phys. Lett. 86 202508Google Scholar

    [18]

    Li C M, Yang S J, Zhou J P 2022 Chin. Phys. B 31 056105Google Scholar

    [19]

    Siewert M, Gruner M E, Hucht A, Herper H C, Dannenberg A, Chakrabarti A, Singh N, Arróyave R, Entel P 2012 Adv. Eng. Mater. 14 530Google Scholar

    [20]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703Google Scholar

    [21]

    Roy T, Pandey D, Chakrabarti A 2016 Phys. Rev. B 93 184102Google Scholar

    [22]

    Vitos L, Abrilsosv I A, Johansson B 2001 Phys. Rev. Lett. 87 156401Google Scholar

    [23]

    Gyorff B L 1972 Phys. Rev. B 5 2382Google Scholar

    [24]

    Bain E C 1924 Trans. Am. Inst. Min. Metall. Eng. 70 25

    [25]

    Cao P Y, Tian F Y, Li W, Vitos L, Wang Y D 2021 Acta Mater. 210 116816Google Scholar

    [26]

    Vitos L 2007 Computational Quantum Mechanics for Materials Engineers (London: Spring-Verlag) pp98–121

    [27]

    Li C M, Zhang Y, Feng W J, Huang R Z, Gao M 2020 Phys. Rev. B 101 054106Google Scholar

    [28]

    胡岩菲 2020 硕士学位论文 (沈阳: 沈阳师范大学)

    Hu Y F 2020 M. S. Thesis (Shenyang: Shangyang Normal University) (in Chinese)

    [29]

    杨顺杰, 李春梅, 周金萍 2022 物理学报 71 106201Google Scholar

    Yang S J, Li C M, Zhou J P 2022 Acta Phys. Sin. 71 106201Google Scholar

    [30]

    Perdew J P, Burke K, Emzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Entel P, Dannenberg A, Siewert M, Herper H C, Gruner M E, Buchelnikov V D, Chernenko V A 2011 Materials Science Forum (Switzerland: Trans Tech Publications) p1

    [32]

    Siewert M, Gruner M E, Dannenberg A, Hucht A, Shapiro S M, Xu G, Schlagel D L, Lograsso T A, Entel P 2010 Phys. Rev. B 82 064420Google Scholar

    [33]

    Eleno L T F, Chivukula A, Arróyave R, Schön C G 2010 TOFA 2010-Discusion Meeting on Thermodynamics of Alloys Porto, Portugual, September 14, 2010

    [34]

    Olivos E, Miranda A L, Singh N, Arróyave R, Romero A H 2012 Ann. Phys. 524 212Google Scholar

    [35]

    Arróyave R, Junkaew A, Chivukula A, Bajaj S, Yao C Y, Garay A 2010 Acta Mater. 58 5220Google Scholar

    [36]

    Li Q S, Liang Z Y, Sun K C, Luo H Z 2019 Comput. Mater. Sci. 168 11Google Scholar

    [37]

    Matsushita Y I, Madjarova G, Dewhurst J K, Shallcross S, Felser C, Sharma S, Gross E K U 2017 J. Phys. D:Appl. Phys. 50 095002Google Scholar

    [38]

    Talapatra A, Arróyave R, Entel P, Valencia-Jaime I, Romero A H 2015 Phys. Rev. B 92 054107Google Scholar

    [39]

    Bai J, Liu D, Huang R K, Zhang Z Y, Yang Y, Gu J L, Yan H L, Zhao X, Zuo L 2020 Mater. Today Commun. 22 100810Google Scholar

    [40]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 13298Google Scholar

    [41]

    Ghosh S, Ghosh S 2019 Phys. Rev. B 99 064112Google Scholar

    [42]

    Shi X Y, Gao R R, Li J Q, Lu T Y, Luo H Z 2022 J. Magn. Magn. Mater. 547 168815Google Scholar

    [43]

    Singh N, Dogan E, Karaman I, Arróyave R 2011 Phys. Rev. B 84 184201Google Scholar

  • [1] Chen Tun, Cui Jie-Chao, Li Min, Chen Wen, Sun Zhi-Peng, Fu Bao-Qin, Hou Qing. First-principles study on effects of alloying elements Sn and Nb on phase stability of corrosion oxide films of zirconium alloys. Acta Physica Sinica, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [4] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [6] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [8] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [9] Xin Yue-Peng, Ma Yue-Xing, Hao Hong-Yue, Meng Fan-Bin, Liu He-Yan, Luo Hong-Zhi. Site preference in isoelectronic Heusler alloy Fe2RuSi. Acta Physica Sinica, 2016, 65(14): 147102. doi: 10.7498/aps.65.147102
    [10] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [11] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [12] Zhang Yu-Jie, Li Gui-Jiang, Liu En-Ke, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng, Hu Jun-Xiong. Local ferromagnetic structure in Heusler alloy Mn2CoGa and Mn2CoAl doped by Cr, Fe and Co. Acta Physica Sinica, 2013, 62(3): 037501. doi: 10.7498/aps.62.037501
    [13] Zheng Shu-Wen, Fan Guang-Han, Li Shu-Ti, Zhang Tao, Su Chen. Energy band properties and phase stability of Be1-xMgxO alloy. Acta Physica Sinica, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [14] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [18] Xu Wen-Wu, Song Xiao-Yan, Li Er-Dong, Wei Jun, Li Ling-Mei. Phase configuration and stability in the nanocrystalline Sm-Co system. Acta Physica Sinica, 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
Metrics
  • Abstract views:  2817
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  18 April 2023
  • Accepted Date:  18 May 2023
  • Available Online:  02 June 2023
  • Published Online:  05 August 2023

/

返回文章
返回