Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on capillary discharge for laser plasma wake acceleration

Zhu Xin-Zhe Li Bo-Yuan Liu Feng Li Jian-Long Bi Ze-Wu Lu Lin Yuan Xiao-Hui Yan Wen-Chao Chen Min Chen Li-Ming Sheng Zheng-Ming Zhang Jie

Citation:

Experimental study on capillary discharge for laser plasma wake acceleration

Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie
PDF
HTML
Get Citation
  • Preformed plasma channels play important roles in many applications, such as laser wakefield acceleration, plasma lens, and so on. Laser pulses can be well guided when the radial density distribution of the plasma channel has a parabolic profile and it is matched with the laser focus. Discharging a gas-filled capillary is a possible way to form such plasma channels. In this work, we report the capillary discharging and laser guiding experiments performed in the Laboratory for Laser Plasmas at Shanghai Jiao Tong University. The plasma density distributions in the Helium-filled discharged capillary are measured by using the spectral broadening method. In a capillary with a length of 3 cm and a diameter of 300 μm, the plasma density profile is observed to be uniformly distributed along the axial direction and have a parabolic profile along the radial direction. Parameters for plasma channel generation are scanned. The deepest channel depth obtained is 28 μm, which is close to the focal spot radius of the laser used in the experiment. Laser guidance in the plasma channel is also studied. The results show that the laser can maintain its focus and continuously propagate when the channel depth matches the focal spot, indicating that the well guiding of the laser pulse by the preformed plasma channel is obtained. These studies may serve as the ground work for the future studies, such as staged laser wakefield acceleration and phase-locked wakefield acceleration.
      Corresponding author: Chen Min, minchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11991074, 11774227, 11905129, 12175140, 12135009), the Science Challenge Project of China (Grant No. TZ2018005), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25010500).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser and Particle Beams 32 092001Google Scholar

    [4]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [5]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z G, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [6]

    Rittershofer W, Schroeder C B, Esarey E, Gruner F J, Leemans W P 2010 Phys. Plasmas 17 063104Google Scholar

    [7]

    Li W T, Liu J S, Wang W T, Zhang Z J, Chen Q, Tian Y, Qi R, Yu C H, Wang C, Tajima T, Li R X, Xu Z Z 2014 Appl. Phys. Lett. 104 093510Google Scholar

    [8]

    Sadler J D, Arran C, Li H, Flippo K A 2020 Phys. Rev. Accel. Beams 23 021303Google Scholar

    [9]

    Palastro J P, Shaw J L, Franke P, Ramsey D, Simpson T T, Froula D H 2020 Phys. Rev. Lett. 124 134802Google Scholar

    [10]

    Palastro J P, Malaca B, Vieira J, Ramsey D, Simpson T T, Franke P, Shaw J L, Froula D H 2021 Phys. Plasmas 28 013109Google Scholar

    [11]

    Steinhauer L C, Ahlstrom H G 1971 Phys. Fluids 14 1109Google Scholar

    [12]

    Sprangle P, Esarey E, Krall J, Joyce G 1992 Phys. Rev. Lett. 69 2200Google Scholar

    [13]

    Zigler A, Ehrlich Y, Cohen C, Krall J, Sprangle P 1996 J. Opt. Soc. Am. B 13 68Google Scholar

    [14]

    Hooker S M, Spence D J, Smith R A 2000 J. Opt. Soc. Am. B 17 90Google Scholar

    [15]

    Gonsalves A J, Rowlands-Rees T P, Broks B H P, van der Mullen J J A M, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [16]

    Esarey E, Sprangle P, Krall J, Ting A, Joyce G 1993 Phys. Fluids B:Plasma Physics 5 2690Google Scholar

    [17]

    Nakamurac K, Naglerd B, Tóth Cs, Geddes C G R, Schroeder C B, Gonsalvesf A J, Hooker S M, Esarey E, Leemanse W P 2007 Phys. Plasmas 14 056708Google Scholar

    [18]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth Cs, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [19]

    Miao B, Feder L, Shrock J E, Goffin A, Milchberg H M 2020 Phys. Rev. Lett. 125 074801Google Scholar

    [20]

    Ta Phuoc K, Corde S, Shah R, Albert F, Fitour R, Rousseau J P, Burgy F, Mercier B, Rousse A 2006 Phys. Rev. Lett. 97 225002Google Scholar

    [21]

    Katsouleas S W T, Su J D J 1987 Part. Accel 22 81

    [22]

    Schroeder C B, Benedetti C, Esarey E, Leemans W P 2013 Phys. Plasmas 20 123115Google Scholar

    [23]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. Spec. Top. -Ac 10 061301

    [24]

    Esarey E, Krall J, Sprangle P 1994 Phys. Rev. Lett. 72 2887Google Scholar

    [25]

    Hosokai T, Kando M, Dewa H, Kotaki H, Kondo S 2000 Optics Lett. 25 10Google Scholar

    [26]

    Ehrlich Y, Cohen C, Kaganovich D, Zigler A, Hubbard R F, Sprangle P, Esarey E 1998 J. Opt. Soc. Am. B 15 2416Google Scholar

    [27]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 7008

    [28]

    Gaul E W, Le Blanc S P, Rundquist A R, Zgadzaj R, Langhoff H, Downer M C 2000 Appl. Phys. Lett. 77 4112Google Scholar

    [29]

    Griem H R, Baranger M, Kolb A C, Oertel G 1962 Phys. Rev. 125 177Google Scholar

    [30]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001Google Scholar

    [31]

    Hiromitsu T, Nadezhda B, Pavel S, Takashi K, Toru S, Takeshi H, Noboru Y, Ryosuke K 2011 J. Appl. Phys. 109 053304Google Scholar

    [32]

    Guillaume E, Döpp A, Thaury C, Ta Phuoc K, Lifschitz A, Grittani G, Goddet J P, Tafzi A, Chou S W, Veisz L, Malka V 2015 Phys. Rev. Lett. 115 155002Google Scholar

    [33]

    Zhu X Z, Chen M, Li B Y, Liu F, Ge X L, Sheng Z M, Zhang J 2022 Phys. Plasmas 29 013101Google Scholar

    [34]

    Wang W T, Feng K, Ke L T, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Nature 595 516Google Scholar

  • 图 1  上海交通大学激光等离子体实验室用于激光尾波加速的放电毛细管装置

    Figure 1.  Discharged capillary for laser wakefield accelerator at the Laboratory for Laser Plasmas, SJTU.

    图 2  毛细管的放电电路和电流 (a) 毛细管放电电路图; (b) 典型的放电电流

    Figure 2.  Capillary discharge circuit and current: (a) Discharge circuit; (b) typical discharge current.

    图 3  使用Stark展宽标定He放电等离子体的密度 (a) 氦等离子体的谱线; (b) 谱线在587.6 nm附近的展宽; (c) 在放电电压10 kV, 背压15 psi (1 psi = 6.89476 × 103 Pa)时测量到的等离子体密度

    Figure 3.  Measuring the density of Helium plasma with Stark broadening: (a) Spectra of Helium plasma; (b) spectra broadening at 587.6 nm; (c) plasma density at 10 kV and 15 psi backpressure.

    图 4  在放电电压10 kV, 充气背压5 psi 下毛细管的轴向放电光谱和密度 (a)探测器示意图; (b)轴向放电光谱; (c)轴向等离子体密度

    Figure 4.  On-axis discharge spectrum and density distribution of the capillary at 10 kV and 5 psi: (a) Schematic of the detector; (b) the axial spectra along the capillary; (c) the axial plasma density.

    图 5  在15 kV下毛细管放电时的端面光谱和径向等离子体密度分布 (a) 500 μm 毛细管的径向光谱; (b) 300 μm 毛细管的径向光谱; (c) 500 μm毛细管的径向密度分布; (d) 300 μm毛细管的径向密度分布

    Figure 5.  End-face spectra detected during the discharge and the radial plasma density distribution at 15 kV: (a) Spectra of 500 μm capillary; (b) spectra of 300 μm capillary; (c) radial density distribution of 500 μm capillary; (d) radial density distribution of 300 μm capillary.

    图 6  300 μm口径毛细管的通道半径和中轴线密度随放电时间和背压的演化 (a) $ {r}_{0} $$ {n}_{0} $随时间的演化; (b) $ {r}_{0} $$ {n}_{0} $随背压的演化

    Figure 6.  Evolutions of the channel radius and the on-axis density in the capillary with 300 μm inner diameter: (a) $ {r}_{0} $ and $ {n}_{0} $ evolution with time; (b) $ {r}_{0} $ and $ {n}_{0} $ evolution with backpressure.

    图 7  毛细管的光导引实验装置示意图

    Figure 7.  Schematic of laser guiding by discharged capillary experiment.

    图 8  放电毛细管导引小能量激光 (a) 毛细管前的激光焦斑; (b) 正中心入射穿过通道的激光光斑; (c) 偏轴10 μm 入射穿过通道的激光光斑; (d) 偏轴20 μm 入射穿过通道的激光光斑

    Figure 8.  Small energy laser guiding by discharged capillary: (a) Laser spot before capillary; (b) laser spot after capillary for on-axis incidence; (c) laser spot after capillary for 10 μm off-axis incidence; (d) laser spot after capillary for 20 μm off-axis incidence.

    图 9  经过毛细管导引后的大能量(3 J)激光光斑

    Figure 9.  Spot of capillary guided laser with energy of 3 J.

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser and Particle Beams 32 092001Google Scholar

    [4]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G R, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [5]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z G, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [6]

    Rittershofer W, Schroeder C B, Esarey E, Gruner F J, Leemans W P 2010 Phys. Plasmas 17 063104Google Scholar

    [7]

    Li W T, Liu J S, Wang W T, Zhang Z J, Chen Q, Tian Y, Qi R, Yu C H, Wang C, Tajima T, Li R X, Xu Z Z 2014 Appl. Phys. Lett. 104 093510Google Scholar

    [8]

    Sadler J D, Arran C, Li H, Flippo K A 2020 Phys. Rev. Accel. Beams 23 021303Google Scholar

    [9]

    Palastro J P, Shaw J L, Franke P, Ramsey D, Simpson T T, Froula D H 2020 Phys. Rev. Lett. 124 134802Google Scholar

    [10]

    Palastro J P, Malaca B, Vieira J, Ramsey D, Simpson T T, Franke P, Shaw J L, Froula D H 2021 Phys. Plasmas 28 013109Google Scholar

    [11]

    Steinhauer L C, Ahlstrom H G 1971 Phys. Fluids 14 1109Google Scholar

    [12]

    Sprangle P, Esarey E, Krall J, Joyce G 1992 Phys. Rev. Lett. 69 2200Google Scholar

    [13]

    Zigler A, Ehrlich Y, Cohen C, Krall J, Sprangle P 1996 J. Opt. Soc. Am. B 13 68Google Scholar

    [14]

    Hooker S M, Spence D J, Smith R A 2000 J. Opt. Soc. Am. B 17 90Google Scholar

    [15]

    Gonsalves A J, Rowlands-Rees T P, Broks B H P, van der Mullen J J A M, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [16]

    Esarey E, Sprangle P, Krall J, Ting A, Joyce G 1993 Phys. Fluids B:Plasma Physics 5 2690Google Scholar

    [17]

    Nakamurac K, Naglerd B, Tóth Cs, Geddes C G R, Schroeder C B, Gonsalvesf A J, Hooker S M, Esarey E, Leemanse W P 2007 Phys. Plasmas 14 056708Google Scholar

    [18]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth Cs, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [19]

    Miao B, Feder L, Shrock J E, Goffin A, Milchberg H M 2020 Phys. Rev. Lett. 125 074801Google Scholar

    [20]

    Ta Phuoc K, Corde S, Shah R, Albert F, Fitour R, Rousseau J P, Burgy F, Mercier B, Rousse A 2006 Phys. Rev. Lett. 97 225002Google Scholar

    [21]

    Katsouleas S W T, Su J D J 1987 Part. Accel 22 81

    [22]

    Schroeder C B, Benedetti C, Esarey E, Leemans W P 2013 Phys. Plasmas 20 123115Google Scholar

    [23]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. Spec. Top. -Ac 10 061301

    [24]

    Esarey E, Krall J, Sprangle P 1994 Phys. Rev. Lett. 72 2887Google Scholar

    [25]

    Hosokai T, Kando M, Dewa H, Kotaki H, Kondo S 2000 Optics Lett. 25 10Google Scholar

    [26]

    Ehrlich Y, Cohen C, Kaganovich D, Zigler A, Hubbard R F, Sprangle P, Esarey E 1998 J. Opt. Soc. Am. B 15 2416Google Scholar

    [27]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 7008

    [28]

    Gaul E W, Le Blanc S P, Rundquist A R, Zgadzaj R, Langhoff H, Downer M C 2000 Appl. Phys. Lett. 77 4112Google Scholar

    [29]

    Griem H R, Baranger M, Kolb A C, Oertel G 1962 Phys. Rev. 125 177Google Scholar

    [30]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol. 24 034001Google Scholar

    [31]

    Hiromitsu T, Nadezhda B, Pavel S, Takashi K, Toru S, Takeshi H, Noboru Y, Ryosuke K 2011 J. Appl. Phys. 109 053304Google Scholar

    [32]

    Guillaume E, Döpp A, Thaury C, Ta Phuoc K, Lifschitz A, Grittani G, Goddet J P, Tafzi A, Chou S W, Veisz L, Malka V 2015 Phys. Rev. Lett. 115 155002Google Scholar

    [33]

    Zhu X Z, Chen M, Li B Y, Liu F, Ge X L, Sheng Z M, Zhang J 2022 Phys. Plasmas 29 013101Google Scholar

    [34]

    Wang W T, Feng K, Ke L T, Yu C H, Xu Y, Qi R, Chen Y, Qin Z Y, Zhang Z J, Fang M, Liu J Q, Jiang K N, Wang H, Wang C, Yang X J, Wu F X, Leng Y X, Liu J S, Li R X, Xu Z Z 2021 Nature 595 516Google Scholar

  • [1] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [2] Wang Chen, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Ji Yu, Lian Chang-Wang, Xie Zhi-Yong, Guo Er-Fu, He Zhi-Yu, Cao Zhao-Dong, Wang Wei, Yan Rui, Pei Wen-Bing. Spectral structures of backward stimulated Brillouin scattering driven by a picosecond laser. Acta Physica Sinica, 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [3] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [4] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [5] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [6] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [7] Meng Xiang-Fu, Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Zhou Hua-Zhen, Sun Jin-Ren, Wang Wei, Fu Si-Zu. Research of coherence between driven-laser beams and its influence on backscatter. Acta Physica Sinica, 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [8] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [9] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [10] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [11] Study of laser plasma interactions using Vlasov and Maxwell equations. Acta Physica Sinica, 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [12] Liu Zhan-Jun, Zheng Chun-Yang, Cao Li-Hua, Li Bin, Zhu Shao-Ping. Influence of under-dense plasma on laser conical target interaction. Acta Physica Sinica, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [13] Zhang Yi, Li Yu-Tong, Zhang Jie, Chen Zheng-Lin, Kodama R.. Calculation of neutron spectrum in ultraintense laser-plasmas interactions. Acta Physica Sinica, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [14] Zhang Jia-Tai, Liu Song-Fen, Hu Bei-Lai. Filamentation instability of intense laser in partially ionized plasma. Acta Physica Sinica, 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [15] LAI GUO-JUN, JI PEI-YONG. PHOTON ACCELERATION BASED ON LASER-PLASMA. Acta Physica Sinica, 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [16] LI YU-TONG, ZHANG JIE, CHEN LI-MING, XIA JIANG-FAN, TENG HAO, WEI ZHI-YI, JIANG WEN-MIAN. OBSERVATION OF THE TRANSVERSE PINCH OF THE EXPANSION OF AN FEMTOSECOND LASER-PLA SMA. Acta Physica Sinica, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
    [17] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [18] YU WEI, XU ZHI-ZHAN, MA JIN-XIU, CHEN RONG-QING. DEVELOPMENT OF THREE-WAVE INTERACTIONS IN A PLASMA BEAT-WAVE ACCELERATOR. Acta Physica Sinica, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [19] MA JING-XIU, XU ZHI-ZHAN. BISTABILITY IN THE INTERACTION OF INTENSE TWO-FREQUENCY LASER WITH PLASMA. Acta Physica Sinica, 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [20] Xu Zhi-zhan, Yin Guang-yu, Zhang Yan-zhen, Lin Kang-chun. STIMULATED BRILLOUIN SCATTERING DUE TO LASER-PLASMA INTERACTIONS. Acta Physica Sinica, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
Metrics
  • Abstract views:  3930
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2021
  • Accepted Date:  17 January 2022
  • Available Online:  26 January 2022
  • Published Online:  05 May 2022

/

返回文章
返回