Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser-plasma jet driven sub-millimeter diameter aluminum flyer and its gesture diagnosis

Shui Min Xi Tao Yan Yong-Hong Yu Ming-Hai Chu Gen-Bai Zhu Bin He Wei-Hua Zhao Yong-Qiang Wang Shao-Yi Fan Wei Lu Feng Yang Lei Xin Jian-Ting Zhou Wei-Min

Citation:

Laser-plasma jet driven sub-millimeter diameter aluminum flyer and its gesture diagnosis

Shui Min, Xi Tao, Yan Yong-Hong, Yu Ming-Hai, Chu Gen-Bai, Zhu Bin, He Wei-Hua, Zhao Yong-Qiang, Wang Shao-Yi, Fan Wei, Lu Feng, Yang Lei, Xin Jian-Ting, Zhou Wei-Min
PDF
HTML
Get Citation
  • Laser-driven flyer has been studied for decades as it promises to possess many applications such as in measuring the equation of state (EOS) under ultrahigh pressure, investigating the material dynamic properties under high strain rate, simulating the high-speed impact for aircraft protection, and igniting explosives. However, the planarity and integrity of flyers are determined by indirect velocity lnterferometer system for any reflector (VISAR) or witness slab results due to its high speed and small dimension. For further and wide applications, it is very important to obtain direct experimental proof of the flyer gesture and configuration. Thus, the acceleration and gesture investigation of aluminum flyer driven by laser plasma are studied on Xingguang-III laser facility. The X-ray radiography is achieved by a picosecond laser irradiating the copper wire target. The shadowgraph of flyer and plasma are realized by the incidence of a bunch of infrared laser through the flyer flight path. In additon, photon Doppler velocimetry is employed to measure the flyer velocity simultaneously. The radiography, shadowgraph and velocity of typical small aluminum flyer are obtained. By optimizing the thickness of both CH ablation layer and vacuum gap, the flyer is slowly accelerated via consecutive stress wave produced by plasma colliding. The aluminum flyer has a thickness of 20 μm and diameter of about 500 μm. The whole flyer remains the integrated shape after a great angle of rotation due to uneven plasma loading. The flight distance is about 400 μm, giving an average velocity of 2.2 km/s. The planarity of the flyer is good except a little bend on the two sides due to side rarefaction of plasma. The study verifies that the laser plasma collision can generate a sub-millimeter-diameter metal flyer with integrated shape and a velocity of several kilo-meters per second, showing that it possesses the promising applications in measuring the EOS and igniting explosive .
      Corresponding author: Shui Min, shuimin123@163.com
    • Funds: Project supported by the the National Key R&D Program of China (Grant No. 2017YFA0206001) and the Foundation of Science and Technology on Plasma Physics Laboratory, China (Grant No. 6142A04200105).
    [1]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002Google Scholar

    [2]

    O'Keefe J D, Ahrens T J 1993 J Geophys. Res. 98 17011Google Scholar

    [3]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [4]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [5]

    Eggert J H, Bastea M, Braun D, Fujino D, Rygg R, Smith R, Hawreliak J, Hicks D G, Collins G 2010 Laser-induced Ramp Compression of Tantalum and Iron to Over 300 GPa: EOS and X-ray Diffraction (Livermore: Lawrence Livermore National Laboratory) LLNL-CONF-425256

    [6]

    Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504Google Scholar

    [7]

    Shu H, Huang X, Ye J, Jia G, Wu J, Fu S 2017 Laser Part. Beams 35 145Google Scholar

    [8]

    税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋 2017 物理学报 66 064703Google Scholar

    Shui M, Chu G B, Xi T, Zhao Y Q, Fan W, He W H, Shan L Q, Zhu B, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 064703Google Scholar

    [9]

    Watson S, Field J E 2000 J Appl. Phys. 88 3859Google Scholar

    [10]

    Gu Z W, Sun C W, Zhao J H, Zhang N 2004 J Appl. Phys. 96 344Google Scholar

    [11]

    Cogan S, Shirman E, Haas Y 2005 J Appl. Phys. 97 113508Google Scholar

    [12]

    Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902Google Scholar

    [13]

    Curtis A D, Banishev A A, Shaw W L, Dlott D D 2014 Rev. Sci. Instrum. 85 043908Google Scholar

    [14]

    谷卓伟, 张兴卫, 孙承纬 2008 高压物理学报 22 103Google Scholar

    Gu Z W, Zhang X W, Sun C W 2008 Chin. J. High Pressure Phys. 22 103Google Scholar

    [15]

    周维民, 于明海, 张天奎, 田超, 单连强, 吴玉迟, 张锋, 毕碧, 储根柏, 税敏, 辛建婷, 曹磊峰, 谷渝秋, 朱少平, 景峰, 张保汉 2020 中国激光 47 0500010Google Scholar

    Zhou W M, Yu M H, Zhang T K, Tian C, Shan L Q, Wu Y C, Zhang F, Bi B, Chu G B, Shui M, Xin J T, Cao L F, Gu Y Q, Zhu S P, Jing F, Zhang B H 2020 Chin. J. Lasers 47 0500010Google Scholar

    [16]

    Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [17]

    Xin J T, He A M, Liu W B, Chu G B, Yu M H, Fan W, Wu Y C, Xi T, Shui M, Zhao Y Q, Wang P, Gu Y Q, He W H 2019 J Micromech. Microeng. 29 095011Google Scholar

    [18]

    储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民 2020 物理学报 69 026201Google Scholar

    Chu G B, Yu M H, Shui M, Fan W, Xi Tao, Jing L F, Zhao Y Q, Wu Y C, Xin J T, Zhou W M 2020 Acta Phys. Sin. 69 026201Google Scholar

    [19]

    税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋 2019 物理学报 68 076201Google Scholar

    Shui M, Yu M H, Chu G B, Xi T, Fan W, Zhao Y Q, Xin J T, He W H, Gu Y Q 2019 Acta Phys. Sin. 68 076201Google Scholar

    [20]

    Xi T, Chu G B, Zhu B, Shui M, Zhao Y Q, Fan W, Gu Y Q, Xin J T, He W H 2019 AIP adv. 9 075220Google Scholar

    [21]

    单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204Google Scholar

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204Google Scholar

  • 图 1  经过1 mm CPP后的远场光学焦斑空间分布

    Figure 1.  On-target focal spot of nanosecond beam after 1 mm CPP.

    图 2  远场光学焦斑的一维强度空间分布 (a) 沿着y轴; (b) 沿着x

    Figure 2.  One-dimensional on-target focal spot of nanosecond beam after 1 mm CPP: (a) Along y axis; (b) along x axis.

    图 3  等离子体射流驱动飞片及姿态诊断原理示意图

    Figure 3.  Schematic view of plasma-driven flyer and gesture investigation.

    图 4  实验诊断排布示意图(俯视图)

    Figure 4.  Schematic view of experimental diagnostic configuration (top view).

    图 5  不同能量和真空间隙长度下Multi计算的铝飞片速度曲线

    Figure 5.  Aluminum flyer velocity obtained by Multi calculation at different laser energy and vacuum gap length.

    图 6  PDV测量的不同激光能量对应的铝飞片自由面速度曲线

    Figure 6.  Aluminum flyer velocity obtained by PDV measurements at different ns laser energy.

    图 7  背光照相的静态空间分辨 (a) Cu客体背光图像; (b)空间分辨拟合结果

    Figure 7.  Static spatial resolution: (a) Radiography of copper slab; (b) spatial resolution determined by edge spread function.

    图 8  等离子体射流驱动铝飞片的X光图像(其中照相延时346 ns) (a) 原始图像; (b) 飞片旋转放大后的图像

    Figure 8.  Radiography of aluminum flyer driven by laser plasma, where time delay is 346 ns: (a) Raw image; (b) magnified flyer image after rotation.

    图 9  等离子体射流驱动的铝飞片X光图像, 其中照相延时350 ns

    Figure 9.  Radiography of aluminum flyer driven by laser plasma, where time delay is 350 ns.

    图 10  典型的等离子体射流驱动铝飞片阴影图像, 其中相对ns激光延时分别为(a) 120 ns, (b) 180 ns, (c) 240 ns, (d) 300 ns

    Figure 10.  Typical shadowgraphs of aluminum flyer driven by laser plasma, where the time delay referring to ns laser is (a) 120 ns, (b) 180 ns, (c) 240 ns, (d) 300 ns.

    表 1  实验结果统计

    Table 1.  Experimental parameter above the shocked melting point.

    序号发次号实验内容激光能量ps束照相延时/ns
    120210524123静态照相标定ps: 92 J
    220200902010铝飞片产生及姿态诊断ns: 50 J, ps: 46 J, 346
    320210524125铝飞片产生及姿态诊断ns: 46 J, ps: 93 J, 350
    420210527134铝飞片产生及姿态诊断ns: 47 J, ps: 37 J350
    DownLoad: CSV
  • [1]

    Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002Google Scholar

    [2]

    O'Keefe J D, Ahrens T J 1993 J Geophys. Res. 98 17011Google Scholar

    [3]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [4]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [5]

    Eggert J H, Bastea M, Braun D, Fujino D, Rygg R, Smith R, Hawreliak J, Hicks D G, Collins G 2010 Laser-induced Ramp Compression of Tantalum and Iron to Over 300 GPa: EOS and X-ray Diffraction (Livermore: Lawrence Livermore National Laboratory) LLNL-CONF-425256

    [6]

    Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504Google Scholar

    [7]

    Shu H, Huang X, Ye J, Jia G, Wu J, Fu S 2017 Laser Part. Beams 35 145Google Scholar

    [8]

    税敏, 储根柏, 席涛, 赵永强, 范伟, 何卫华, 单连强, 朱斌, 辛建婷, 谷渝秋 2017 物理学报 66 064703Google Scholar

    Shui M, Chu G B, Xi T, Zhao Y Q, Fan W, He W H, Shan L Q, Zhu B, Xin J T, Gu Y Q 2017 Acta Phys. Sin. 66 064703Google Scholar

    [9]

    Watson S, Field J E 2000 J Appl. Phys. 88 3859Google Scholar

    [10]

    Gu Z W, Sun C W, Zhao J H, Zhang N 2004 J Appl. Phys. 96 344Google Scholar

    [11]

    Cogan S, Shirman E, Haas Y 2005 J Appl. Phys. 97 113508Google Scholar

    [12]

    Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902Google Scholar

    [13]

    Curtis A D, Banishev A A, Shaw W L, Dlott D D 2014 Rev. Sci. Instrum. 85 043908Google Scholar

    [14]

    谷卓伟, 张兴卫, 孙承纬 2008 高压物理学报 22 103Google Scholar

    Gu Z W, Zhang X W, Sun C W 2008 Chin. J. High Pressure Phys. 22 103Google Scholar

    [15]

    周维民, 于明海, 张天奎, 田超, 单连强, 吴玉迟, 张锋, 毕碧, 储根柏, 税敏, 辛建婷, 曹磊峰, 谷渝秋, 朱少平, 景峰, 张保汉 2020 中国激光 47 0500010Google Scholar

    Zhou W M, Yu M H, Zhang T K, Tian C, Shan L Q, Wu Y C, Zhang F, Bi B, Chu G B, Shui M, Xin J T, Cao L F, Gu Y Q, Zhu S P, Jing F, Zhang B H 2020 Chin. J. Lasers 47 0500010Google Scholar

    [16]

    Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T, Gu Y Q 2018 Rev. Sci. Instrum. 89 115106Google Scholar

    [17]

    Xin J T, He A M, Liu W B, Chu G B, Yu M H, Fan W, Wu Y C, Xi T, Shui M, Zhao Y Q, Wang P, Gu Y Q, He W H 2019 J Micromech. Microeng. 29 095011Google Scholar

    [18]

    储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民 2020 物理学报 69 026201Google Scholar

    Chu G B, Yu M H, Shui M, Fan W, Xi Tao, Jing L F, Zhao Y Q, Wu Y C, Xin J T, Zhou W M 2020 Acta Phys. Sin. 69 026201Google Scholar

    [19]

    税敏, 于明海, 储根柏, 席涛, 范伟, 赵永强, 辛建婷, 何卫华, 谷渝秋 2019 物理学报 68 076201Google Scholar

    Shui M, Yu M H, Chu G B, Xi T, Fan W, Zhao Y Q, Xin J T, He W H, Gu Y Q 2019 Acta Phys. Sin. 68 076201Google Scholar

    [20]

    Xi T, Chu G B, Zhu B, Shui M, Zhao Y Q, Fan W, Gu Y Q, Xin J T, He W H 2019 AIP adv. 9 075220Google Scholar

    [21]

    单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 物理学报 61 135204Google Scholar

    Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204Google Scholar

  • [1] Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen. Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge. Acta Physica Sinica, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [2] Hu Yang, Luo Jing-Yi, Cai Yu-Yan, Lu Xin-Pei. Effect of external magnetic field on helix plasma plume. Acta Physica Sinica, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [3] Yang Li-Jun, Song Cai-Hong, Zhao Na, Zhou Shuai, Wu Jia-Cun, Jia Peng-Ying. Discharge characteristics of argon brush plasma plume operated at atmospheric pressure. Acta Physica Sinica, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [4] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [5] Wang Zhen-Xing, Cao Zhi-Yuan, Li Rui, Chen Feng, Sun Li-Qiong, Geng Ying-San, Wang Jian-Hua. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field. Acta Physica Sinica, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [6] Zhang Yun-Gang, Liu Huang-Tao, Gao Qiang, Zhu Zhi-Feng, Li Bo, Wang Yong-Da. Time-resolved spectral characteristics of SF6 plasma under femtosecond laser-guided high-voltage discharge. Acta Physica Sinica, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [7] Xue Quan-Xi, Jiang Shao-En, Wang Zhe-Bin, Wang Feng, Zhao Xue-Qing, Yi Ai-Ping, Ding Yong-Kun, Liu Jing-Ru. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility. Acta Physica Sinica, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [8] Shui Min, Chu Gen-Bai, Xi Tao, Zhao Yong-Qiang, Fan Wei, He Wei-Hua, Shan Lian-Qiang, Zhu Bin, Xin Jian-Ting, Gu Yu-Qiu. Experimental progress of laser-driven flyers at the SG-III prototype laser facility. Acta Physica Sinica, 2017, 66(6): 064703. doi: 10.7498/aps.66.064703
    [9] Zhang Xu-Ping, Luo Bin-Qiang, Chong Tao, Wang Gui-Ji, Tan Fu-Li, Zhao Jian-Heng, Sun Cheng-Wei, Liu Cang-Li. Refractive index of Z-cut quartz under magnetically driven quasi-isentropic compression. Acta Physica Sinica, 2016, 65(4): 046201. doi: 10.7498/aps.65.046201
    [10] Zhang Zhi-Yu, Zhao Yang, Xue Quan-Xi, Wang Feng, Yang Jia-Min. Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment. Acta Physica Sinica, 2015, 64(20): 205202. doi: 10.7498/aps.64.205202
    [11] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [12] Wang Feng, Peng Xiao-Shi, Shan Lian-Qiang, Li Mu, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility. Acta Physica Sinica, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [13] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [14] Shan Lian-Qiang, Gao Yu-Lin, Xin Jian-Ting, Wang Feng, Peng Xiao-Shi, Xu Tao, Zhou Wei-Min, Zhao Zong-Qing, Cao Lei-Feng, Wu Yu-Chi, Zhu Bin, Liu Hong-Jie, Liu Dong-Xiao, Shui Min, He Ying-Ling, Zhan Xia-Yu, Gu Yu-Qiu. Laser-driven reservoir target for quasi-isentropic compression in aluminum. Acta Physica Sinica, 2012, 61(13): 135204. doi: 10.7498/aps.61.135204
    [15] Zhao Xing-Hai, Zhao Xiang, Gao Yang, Xi Shi-Wei, Su Wei. Fiber-coupled laser-driven flyer plates experiments. Acta Physica Sinica, 2011, 60(11): 118204. doi: 10.7498/aps.60.118204
    [16] Wang Chen, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Ye Jun-Jian, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Zhen Wu-Di, Ye Wen-Hua, Qiao Xiu-Mei, Zhang Guo-Ping. Experimental diagnosis of plasma jets by using an X-ray laser. Acta Physica Sinica, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [17] Huang Hai-Jun, Shen Qiang, Luo Guo-Qiang, Zhang Lian-Meng. Theoritical analysis of quasi-isentropic compression via flier-plate with grade wave impadence. Acta Physica Sinica, 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [18] Shen Qiang, Wang Chuan-Bin, Zhang Lian-Meng, Hua Jin-Song, Tan Hua, Jing Fu-Qian. . Acta Physica Sinica, 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
    [19] MA GUO-BIN, TAN WEI-HAN. SOFT X-RAY LASER IN EXPANSION PLASMA PUMPING BY SHORT PULSED LASER. Acta Physica Sinica, 1994, 43(6): 942-949. doi: 10.7498/aps.43.942
    [20] MA JING-XIU, XU ZHI-ZHAN. EXCITATION OF ELECTRON PLASMA WAVES BY BEATING TWO SELF-TRAPPED LASER BEAMS. Acta Physica Sinica, 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
Metrics
  • Abstract views:  4288
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2021
  • Accepted Date:  15 January 2022
  • Available Online:  08 February 2022
  • Published Online:  05 May 2022

/

返回文章
返回