Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reconstruction of magnetic field distributions from proton radiography by deep learning

AN Ji ZHENG Jun CHEN Min YUAN Xiaohui SHENG Zhengming

Citation:

Reconstruction of magnetic field distributions from proton radiography by deep learning

AN Ji, ZHENG Jun, CHEN Min, YUAN Xiaohui, SHENG Zhengming
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Proton radiography is an effective technique for diagnosing field distributions in plasmas. However, due to the complexity of electromagnetic field structures, reconstructing electromagnetic fields from proton radiographs is extremely challenging and often requires some simplified symmetry assumptions about the fields. Here, we present a machine learning approach to reconstruct three-dimensional (3D) magnetic field distributions from complex proton radiographs without relying on such assumptions.
    To enable this, we construct the target 3D magnetic fields by linearly superposing multiple elementary magnetic structures generated from the Weibel instability. Each element is characterized by eight parameters—structural parameters (a, b, B0), spatial coordinates (x0, y0, z0), and rotation angles (θ, ϕ)—resulting in 80 degrees of freedom in total. Parameters were uniformly sampled within ±25% of their baseline values, and a dataset of 50,000 magnetic field–proton radiograph pairs was generated through forward simulation using GEANT4. All proton radiographs reside in the caustic regime, exhibiting multiple asymmetric caustics and significant flux concentrations.
    A lightweight three-layer convolutional neural network (CNN) was designed for the reconstruction task. The network consists of an input layer, three convolutional modules (the first two following a ”convolution–batch normalization–max pooling” cascaded structure, and the third is simplified to a single convolutional layer), a flattening layer, a dropout layer, and an output layer. Bayesian optimization was applied to determine the optimal hyperparameters. The model was trained on 40000 samples, with 5000 samples for validation and 5000 for testing.
    On the test set, the CNN achieves a mean absolute percentage error (MAPE) of 8.5% in predicting the 80 magnetic parameters, below the 12.9% random-guessing threshold. Prediction errors for most parameters follow near-zero-mean Gaussian distributions, with relative standard deviations under 6%. The reconstructed fields show high spatial agreement with the reference fields, and corresponding proton images match the originals with a cosine similarity of 0.89.
    This study demonstrates that our CNN-based proton radiography reconstruction method can effectively reconstruct complex 3D magnetic fields without symmetry assumptions or manual parameter tuning, offering a novel tool for diagnosing electromagnetic fields in high-intensity laser-plasma interactions. Future work may incorporate multi-angle proton radiography and transfer learning from experimental data to enhance the method’s practicality and robustness.
  • [1]

    Drake R P 2018 High-Energy-Density Physics: Foundation of Inertial Fusion and Experimental Astrophysics. Second edition. edn. (Cham: Springer Nature), pp 12–16

    [2]

    Priest E, Forbes T 2000 Magnetic Reconnection: MHD Theory and Applications (Oxford: Cambridge University Press), pp 1–6

    [3]

    Caprioli D, Spitkovsky A 2014 Astrophys. J. 783 91

    [4]

    Balbus S A, Hawley J F 1998 Rev. Mod. Phys. 70 1

    [5]

    Blandford R, Eichler D 1987 Phys. Rep. 154 1

    [6]

    Song Y, Srinivasan B 2020 Radiat. Eff. Defects Solids 175 1009

    [7]

    García-Rubio F, Betti R, Sanz J, Aluie H 2021 Physics of Plasmas 28 012103

    [8]

    Samtaney R 2003 Phys. Fluids 1994 15 L53

    [9]

    Ryu D, Jones T W, Frank A 2000 Astrophys. J. 545 475

    [10]

    Cui Y, Yang X H, Ma Y Y, Zhang G B, Xu B H, Chen Z H, Li Z, Shao F Q, Zhang J 2024 High Power Laser Science and Engineering 12 e24

    [11]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303

    [12]

    Kugland N L, Ryutov D D, Plechaty C, Ross J S, Park H S 2012 Rev. Sci. Instrum. 83 101301

    [13]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [14]

    Maksimchuk A, Gu S, Flippo K, Umstadter D, Bychenkov V Y 2000 Phys. Rev. Lett. 84 4108

    [15]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [16]

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103 (in Chinese) [滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋 2013 物理学报 62 114103]

    [17]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Physical Review Letters 97 135003

    [18]

    Manuel M J E, Zylstra A B, Rinderknecht H G, Casey D T, Rosenberg M J, Sinenian N, Li C K, Frenje J A, Séguin F H, Petrasso R D 2012 Review of Scientific Instruments 83 063506

    [19]

    Bott A F A, Graziani C, Tzeferacos P, White T G, Lamb D Q, Gregori G, Schekochihin A A 2017 J. Plasma Phys. 83 905830614

    [20]

    Fryxell B, Olson K, Ricker P, Timmes F X, Zingale M, Lamb D Q, MacNeice P, Rosner R, Truran J W, Tufo H 2000 Astrophys. J. Suppl. Ser. 131 273

    [21]

    Tzeferacos P, Fatenejad M, Flocke N, Graziani C, Gregori G, Lamb D Q, Lee D, Meinecke J, Scopatz A, Weide K 2015 High Energy Density Phys. 17 24

    [22]

    Chittenden J P, Lebedev S V, Jennings C A, Bland S N, Ciardi A 2004 Plasma Phys. Control. Fusion 46 B457

    [23]

    Romagnani L, Fuchs J, Borghesi M, Antici P, Audebert P, Ceccherini F, Cowan T, Grismayer T, Kar S, Macchi A, Mora P, Pretzler G, Schiavi A, Toncian T, Willi O 2005 Phys. Rev. Lett. 95 195001.1

    [24]

    Vay J L 2008 Phys. Plasmas 15 056701

    [25]

    Schaeffer D B, Bott A F A, Borghesi M, Flippo K A, Fox W, Fuchs J, Li C K, Séguin F H, Park H S, Tzeferacos P, Willingale L 2023 Rev. Mod. Phys. 95 1

    [26]

    Lu Y C, Li S T, Li H, Flippo K A, Barnak D, Birkel A, Lahmann B, Li C K, Rasmus A M, Kelso K, Zylstra A, Liang E, Tzeferacos P, Lamb D 2020 Physics of Plasmas 27 012303

    [27]

    Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, Kugland N L, Kuranz C C, Levy M C, Li C K, Meinecke J, Morita T, Petrasso R, Plechaty C, Remington B A, Ryutov D D, Sakawa Y, Spitkovsky A, Takabe H, Park H S 2015 Nat. Phys. 11 173

    [28]

    Cecchetti C A, Borghesi M, Fuchs J, Schurtz G, Kar S, Macchi A, Romagnani L, Wilson P A, Antici P, Jung R, Osterholtz J, Pipahl C A, Willi O, Schiavi A, Notley M, Neely D 2009 Physics of Plasmas 16 043102

    [29]

    Graziani C, Tzeferacos P, Lamb D Q, Li C K 2017 Rev. Sci. Instrum. 88 123507

    [30]

    Kasim M F, Ceurvorst L, Ratan N, Sadler J, Chen N, Sävert A, Trines R, Bingham R, Burrows P N, Kaluza M C, Norreys P 2017 Phys. Rev. E 95 023306

    [31]

    Sulman M M, Williams J F, Russell R D 2011 Appl. Numer. Math. 61 298

    [32]

    Schaeffer D B, Fox W, Follett R K, Fiksel G, Li C K, Matteucci J, Bhattacharjee A, Germaschewski K 2019 Phys. Rev. Lett. 122 245001

    [33]

    Campbell P T, Walsh C A, Russell B K, Chittenden J P, Crilly A, Fiksel G, Nilson P M, Thomas A G R, Krushelnick K, Willingale L 2020 Phys. Rev. Lett. 125 1

    [34]

    Song H Y, Wu F Y, Sheng Z M, Zhang J 2023 Physics of Plasmas 30 092707

    [35]

    Liu D J, Tan Y X, Khoram E, Yu Z F 2018 ACS photonics 5 1365

    [36]

    Chen N F Y, Kasim M F, Ceurvorst L, Ratan N, Sadler J, Levy M C, Trines R, Bingham R, Norreys P 2017 Phys. Rev. E 95 043305

    [37]

    Fried B D 1959 The Physics of Fluids 2 337

    [38]

    Weibel E S 1959 Physical Review Letters 2 83

    [39]

    Biermann L, Schlüter A 1951 Phys. Rev. 82 863

    [40]

    Stamper J A, Papadopoulos K, Sudan R N, Dean S O, McLean E A, Dawson J M 1971 Physical Review Letters 26 1012

    [41]

    Levy M C, Ryutov D D, Wilks S C, Ross J S, Huntington C M, Fiuza F, Martinez D A, Kugland N L, Baring M G, Park H S 2015 Rev. Sci. Instrum. 86 033302

    [42]

    Bai Z W, Zhou Z C, Zhao J J, Li X L, Li Z Y, Xiong F Y, Yang H K, Zhang Y Y, Xu Z Q J 2025 ArXiv:2506.04805v1 [cs.LG]

    [43]

    Chollet F (translated by Zhang L) 2021 Deep Learning with Python. Second edition. edn. (New York: Manning), pp 233–235 (in Chinese) [弗朗索瓦 C 著 (张亮译) 2022 Python 深度学习 (第 2 版) (北京:人民邮电出版社) 第 233—235 页]

  • [1] WANG Zhengjun, CHEN Changcheng, YUN Xiongfei, HAN Zhao, TUO Yali, DU Yuxi, ZHANG Xinhui, ZHANG Chunling, GUAN Xiaoning, XIE Jiangzhou, LIU Gang, LU Pengfei. Synergistic Optimization of Lead-Free Double Perovskite Solar Cell Performance through Deep Learning and Density Functional Theory. Acta Physica Sinica, doi: 10.7498/aps.75.20251302
    [2] CHEN Pengbo, WANG Shaoyi, ZHANG Wenbo, WEN Jiaxing, WU Yuchi, ZHAO Zongqing, WANG Du. Deep learning-based design of long-wave infrared dielectric grating accelerator structures. Acta Physica Sinica, doi: 10.7498/aps.74.20250130
    [3] LI Jingyu, JIANG Xingzhao, HE Qian, ZHANG Yifan, WU Tong, JIANG Senzhong, SONG Yuanhong, JIA Wenzhu. Capacitively coupled argon plasmas fluid simulations with deep learning surrogates: Asymmetric inference and quantitative trust boundaries. Acta Physica Sinica, doi: 10.7498/aps.74.20251290
    [4] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, doi: 10.7498/aps.73.20240171
    [5] Ou Xiu-Juan, Xiao Yi. Deep learning methods of predicting RNA torsion angle. Acta Physica Sinica, doi: 10.7498/aps.72.20231069
    [6] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, doi: 10.7498/aps.72.20221374
    [7] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, doi: 10.7498/aps.72.20221305
    [8] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, doi: 10.7498/aps.71.20212435
    [9] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, doi: 10.7498/aps.71.20211373
    [10] Huang Hua, Li Jiang-Tao, Wang Qian-Nan, Meng Ling-Biao, Qi Wei, Hong Wei, Zhang Zhi-Meng, Zhang Bo, He Shu-Kai, Cui Bo, Wu Yi-Tong, Zhang Hang, Ji Liang-Liang, Zhou Wei-Min, Hu Jian-Bo. Experimental study on the dynamic compression of materials at XGIII facility by laser proton photography. Acta Physica Sinica, doi: 10.7498/aps.71.20220919
    [11] Deng Luan, Du Bao, Cai Hong-Bo, Kang Dong-Guo, Zhu Shao-Ping. Self-generated magnetic field in plasma reconstructed by using inverse Abel transformation in proton radiography. Acta Physica Sinica, doi: 10.7498/aps.71.20221848
    [12] Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang. Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, doi: 10.7498/aps.70.20202075
    [13] Chen Feng, Hao Jian-Hong, Xu Hai-Bo. Optimization of proton imaging system including fringe field of magnetic lens. Acta Physica Sinica, doi: 10.7498/aps.70.20201141
    [14] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, doi: 10.7498/aps.70.20210403
    [15] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, doi: 10.7498/aps.69.20191332
    [16] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, doi: 10.7498/aps.69.20200805
    [17] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, doi: 10.7498/aps.69.20201019
    [18] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie. Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field. Acta Physica Sinica, doi: 10.7498/aps.64.105202
    [19] Teng Jian, Zhu Bin, Wang Jian, Hong Wei, Yan Yong-Hong, Zhao Zong-Qing, Cao Lei-Feng, Gu Yu-Qiu. Simulation of electromagnetic soliton radiography under laser-produced proton beam. Acta Physica Sinica, doi: 10.7498/aps.62.114103
    [20] Teng Jian, Hong Wei, Zhao Zong-Qing, Wu Shun-Chao, Qin Xiao-Zun, He Ying-Ling, Gu Yu-Qiu, Ding Yong-Kun. Monte-Carlo study of radiography with laser-produced proton beam. Acta Physica Sinica, doi: 10.7498/aps.58.1635
Metrics
  • Abstract views:  20
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  15 November 2025
  • /

    返回文章
    返回