Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergistic Optimization of Lead-Free Double Perovskite Solar Cell Performance through Deep Learning and Density Functional Theory

WANG Zhengjun CHEN Changcheng YUN Xiongfei HAN Zhao TUO Yali DU Yuxi ZHANG Xinhui ZHANG Chunling GUAN Xiaoning XIE Jiangzhou LIU Gang LU Pengfei

Citation:

Synergistic Optimization of Lead-Free Double Perovskite Solar Cell Performance through Deep Learning and Density Functional Theory

WANG Zhengjun, CHEN Changcheng, YUN Xiongfei, HAN Zhao, TUO Yali, DU Yuxi, ZHANG Xinhui, ZHANG Chunling, GUAN Xiaoning, XIE Jiangzhou, LIU Gang, LU Pengfei
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Accelerating the application of lead-free inorganic halide perovskites in solar cells necessitates the development of novel perovskite materials with suitable bandgap widths, high stability, and environmental friendliness. This represents a crucial pathway for driving photovoltaic technology innovation and reducing reliance on conventional fossil fuels. However, traditional material development paradigms heavily depend on trial-and error experimental screening or pure density functional theory (DFT) calculations, which incur significant time and material costs.
    To address these challenges, this study innovatively proposes and implements an efficient screening strategy based on the synergy between deep learning and DFT calculations. By constructing a database containing 1181 inorganic halide double perovskite materials, we systematically trained and compared the performance of five mainstream machine learning models for the bandgap prediction task: Random Forest Regression (RFR), Gradient Boosting Regression (GBR), Support Vector Regression (SVR), eXtreme Gradient Boosting Regression (XGBR), and a Deep Neural Network (DNN) model. Results demonstrate that the DNN model, leveraging its powerful nonlinear mapping capability and advantage in automatic high-dimensional feature extraction, achieved exceptional prediction accuracy on the test set, with the Mean Absolute Error (MAE) significantly reduced to 0.264 eV and the coefficient of determination (R2) reaching 0.925. Its performance was markedly superior to other compared models, highlighting the immense potential of deep learning in predicting complex material properties.
    Using this optimized DNN model, this study successfully screened four promising inorganic double perovskite candidates from 55 potential materials: Cs2GaAgCl6, Cs2AgIrF6, Cs2InAgCl6, and Cs2AlAgBr6. Among them, Cs2AgIrF6 and Cs2AlAgBr6 performed particularly well, with predicted bandgaps of 1.36 eV and 1.20 eV, respectively. This range ideally matches the requirement for efficient light absorption in solar cells. Further device performance simulations revealed that the solar cell based on Cs2AgIrF6 achieved a simulated power conversion efficiency (PCE) of 23.71%, with an open-circuit voltage (VOC) of 0.94 V, a short-circuit current density (JSC) of 31.19 mA/cm2, and a fill factor (FF) of 80.81%. Cs2AlAgBr6 also exhibited a simulated efficiency of 22.37%, corresponding to VOC=0.78 V, JSC=36.73 mA/cm2, and FF=77.66%. Notably, both materials demonstrated high open-circuit voltages and fill factors, clearly indicating excellent carrier separation efficiency and significantly reduced nonradiative recombination losses within these materials.
    In summary, this study successfully validates the significant efficacy of the deep learning-DFT synergistic strategy in accelerating the discovery of novel lead-free perovskite materials. This method not only substantially enhances the efficiency of DFT data analysis and the depth of pattern mining, overcoming some bottlenecks associated with traditional highthroughput calculations, but more importantly, it provides a practical and highly innovative approach for the rational design of high-performance, stable, and environmentally friendly lead-free perovskite solar cells, holding positive implications for advancing green, low-carbon energy technologies.
  • [1]

    Smal T, Wieprow J 2023 ENERGIES 16 1605

    [2]

    Ingram T, Wieczorek-Kosmala M, Hlavácek K 2023 Energies 16 702

    [3]

    Kannan N, Vakeesan D 2016 Renew. Sust. Energy Rev 62 1092

    [4]

    Liang Z, Zhang Y, Xu H, Chen W, Liu B, Zhang J, Zhang H, Wang Z, Kang D-H, Zeng J, Gao X, Wang Q, Hu H, Zhou H, Cai X, Tian X, Reiss P, Xu B, Kirchartz T, Xiao Z, Dai S, Park N-G, Ye J, Pan X 2023 Nature 624 557

    [5]

    Li Y, Ru X, Yang M, Zheng Y, Yin S, Hong C, Peng F, Qu M, Xue C, Lu J, Fang L, Su C, Chen D, Xu J, Yan C, Li Z, Xu X, Shao Z 2024 Nature 626 105

    [6]

    Razzaq A, Allen T G, Liu W Z, Liu Z X, De Wolf S 2022 JOULE 6 514

    [7]

    Urbaniak A, Czudek A, Dagar J, Unger E L 2022 Sol. Energy Mater. Sol. Cells 238 111618

    [8]

    Xie G S, Li H, Fang J, Wang X, Peng H C, Lin D X, Huang N S, Gan L, Li W J, Jiang R X, Bu T L, Huang F Z, He S S, Qiu L B 2025 Angew. Chem. Int. Ed 64 e202501764

    [9]

    Chen Y H, Feng Z J, Pal A, Zhang J C 2022 Phys. Status Solidi A 219 2200018

    [10]

    Kwon N, Lee J, Ko M J, Kim Y Y, Seo J 2023 Nano Convergence 10 28

    [11]

    Ge Y S, Zheng L K, Wang H B, Gao J, Yao F, Wang C, Li G, Guan H L, Wang S X, Cui H S, Ye F H, Shao W L, Zheng Z M, Yu Z X, Wang J H, Xu Z X, Dai C J, Ma Y H, Yang Y, Guan Z Q, Liu Y, Wang J B, Lin Q Q, Li Z Y, Li X, Ke W J, Grätzel M, Fang G J 2025 Nat. Photonics 19 170

    [12]

    Ahn N, Choi M 2024 Adv. Sci 11 2306110

    [13]

    Sun Y Q, Li F M, Zhang H, Liu W Z, Wang Z H, Mao L, Li Q, He Y L, Yang T, Sun X G, Qian Y C, Ma Y Y, Zhang L P, Du J L, Shi J H, Wang G Y, Han A J, Wang N, Meng F Y, Liu Z X, Liu M Z 2025 Nat. Commun 16 5733

    [14]

    Geng L, Ma Y Y, Sun Y Q, Cai Z L, Lan L, Ma H C, Zhang H, Mao L, Li F M, Liu M Z 2025 Adv. Mater 37 2419018

    [15]

    Zhang T, Cai Z H, Chen S Y 2020 ACS Appl. Mater. Interfaces 12 20680

    [16]

    Murugan S, Lee E C 2023 Materials 16 5275

    [17]

    Cao Y, Zhang Y Q, Bao Y N, Shi L L, Cao G Y, Qin L L, Wang C L, Li X F, Yang Z H 2025 Nano Energy 142 111228

    [18]

    Zhou P P, Xiao X Z, Zhu X Y, Chen Y P, Lu W M, Piao M Y, Cao Z M, Lu M, Fang F, Li Z N, Jiang L J, Chen L X 2023 Energy Storage Mater 63 102964

    [19]

    Al-Sabana O, Abdellatif S O 2022 Optoelectron. Lett 18 148

    [20]

    Hariharan A, Ackermann M, Koss S, Khosravani A, Schleifenbaum J H, Köhnen P, Kalidindi S R, Haase C 2025 Adv. Sci 12 2414880

    [21]

    Wang Y X, Li Y, Tang Z C, Li H, Yuan Z L, Tao H G, Zou N L, Bao T, Liang X H, Chen Z Z, Xu S H, Bian C, Xu Z M, Wang C, Si C, Duan W H, Xu Y 2024 Sci. Bull 69 2514

    [22]

    Usoltsev A N, Korobeynikov N A, Novikov A S, Plyusnin P E, Kolesov B A, Fedin V P, Sokolov M N, Adonin S A 2020 Inorg. Chem 59 17320

    [23]

    Chen Y X, Zhang L F, Wang H, Weinan E 2021 J. Chem. Theory Comput 17 170

    [24]

    Absike H, Baaalla N, Attou L, Labrim H, Hartiti B, Ez-zahraouy H 2022 Solid State Commun 345 114684

    [25]

    Jebari H, Ouichou H, Hamideddine I, Boudad L, Tahiri N, El Mansouri A, El Bounagui O, Taibi M, Ez-Zahraouy H 2023 Comput. Theor. Chem 1220 113993

    [26]

    Wan X Y, Zhang Y H, Lu S H, Wu Y L, Zhou Q H, Wang J L 2022 Acta Phys. Sin 71 177101

    [27]

    Hu W G, Zhang L 2023 Mater. Today Commun 35 105841

    [28]

    Lu S H, Zhou Q H, Ouyang Y X, Guo Y L, Li Q, Wang J L 2018 Nat. Commun 9 3405

    [29]

    Yang C, Chong X Y, Hu M Y, Yu W, He J J, Zhang Y L, Feng J, Zhou Y Y, Wang L W 2023 ACS Appl. Mater. Interfaces 15 40419

    [30]

    Zhang R Q, Motes B, Tan S, Lu Y L, Shih M C, Hao Y L, Yang K R, Srinivasan S, Bawendi M G, Bulovic V 2025 ACS Energy Lett 10 1714

    [31]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater 1 011002

    [32]

    Kresse, Furthmuller 1996 Phys. Rev. B 54 11169

    [33]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [34]

    Ming C, Yang K, Zeng H, Zhang S B, Sun Y Y 2020 Mater. Horiz 7 2985

    [35]

    Huck P, Gunter D, Cholia S, Winston D, N'Diaye A T, Persson K 2016 Concurr. Comput 28 1982

    [36]

    Li W B, Li Y H, Zhang Z L, Gao P 2023 J. Energy Chem 84 347

    [37]

    Al-Daraghmeh T M, Zayed O, Zelai T, Saba S, Mustafa G M, Hakami O, Albalawi H, Bouzgarrou S, Mahmoud Z, Mahmood Q 2023 J. Solid State Chem 322 124003

    [38]

    Du K-z, Meng W, Wang X, Yan Y, Mitzi D B 2017 Angew. Chem. Int. Ed 56 8158

    [39]

    White J, Power S D 2023 Sensors 23 6077

    [40]

    Chen Z M, Wang J, Li C J, Liu B Q, Luo D X, Min Y G, Fu N Q, Xue Q F 2024 J. Mater. Chem. C 12 15444

    [41]

    Nasir I M, Khan M A, Yasmin M, Shah J H, Gabryel M, Scherer R, Damasevicius R 2020 Sensors 20 6793

    [42]

    Wang Q Y, Wang Z, Mizuguchi K, Takao T 2025 Sci. Adv 11 eadt2624

    [43]

    Wenzel J, Matter H, Schmidt F 2019 J. Chem. Inf. Model 59 1253

    [44]

    Hornik K, Stinchcombe M, White H 1989 Neural Netw 2 359

    [45]

    Beniaguev D, Segev I, London M 2021 Neuron 109 2727

    [46]

    Smajic A, Grandits M, Ecker G F 2022 J. Cheminform 14 54

    [47]

    Zhu S, Yu C, Hu J 2024 Appl. Soft Comput 154 111337

    [48]

    Sun Y T, Ding S F, Zhang Z C, Jia W K 2021 Soft Comput 25 5633

    [49]

    Browne 2000 J. Math. Psychol 44 108

    [50]

    Yates L A, Aandahl Z, Richards S A, Brook B W 2023 Ecol. Monogr 93 e1557

    [51]

    Baldi P, Brunak S, Chauvin Y, Andersen C A, Nielsen H 2000 Bioinformatics 16 412

    [52]

    Guo H, Lorin E, Noxon C, Yang X 2025 J. Sci. Comput 103 76

    [53]

    Huang J, Lei T, Siron M, Zhang Y, Yu S, Seeler F, Dehestani A, Quan L N, Schierle-Arndt K, Yang P 2020 Nano Lett 20 3734

    [54]

    Deng X, Zhang Z, Zhang Z, Wu Y, Song H, Li H, Luo B 2024 Adv. Sci 11 2407751

    [55]

    Sharma S, Ward Z D, Bhimani K, Sharma M, Quinton J, Rhone T D, Shi S F, Terrones H, Koratkar N 2023 ACS Appl. Mater. Interfaces 15 18962

    [56]

    Liang Y, Li F, Cui X, Stampfl C, Ringer S P, Yang X, Huang J, Zheng R 2025 Sci. Adv 11 eads7054

    [57]

    Ashfaq A, Tahir S, Mushtaq S, Alqurashi R S, Haneef M, Almousa N, Rehman U u, Bonilla R S 2023 Mater. Today Commun 35 106016

    [58]

    Wang S, Chen C, Shi S, Zhang Z, Cai Y, Gao S, Chen W, Guo S, Abduryim E, Dong C, Guan X, Liu Y, Liu G, Lu P 2024 J. Energy Chem 95 271

    [59]

    Yuan S, Ullah M, Tighezza A M 2025 Front. Energy 19 334

    [60]

    Sharma S, Ward Z D, Bhimani K, Sharma M, Quinton J, Rhone T D, Shi S F, Terrones H, Koratkar N 2023 ACS Appl. Mater. Interfaces 15 18962

    [61]

    Adekoya A H, Snyder G J 2024 Adv. Funct. Mater 34 2403926

    [62]

    Wang R, Jia Y L, Zhang Y, Ma X J, Xu Q, Zhu Z X, Deng Y H, Xiong Z H, Gao C H 2020 Acta Phys. Sin 69 038501

    [63]

    Nyayban A, Panda S, Chowdhury A 2023 Phys. B Condens. Matter 649 414384

    [64]

    Wang T, Zhou D, Wang Y, Li W, Wang Y, Yang H, Song R, Wang E, Song R, Fang Y, Zhou S, Bai X, Song H 2025 Adv. Funct. Mater 35 2504436

    [65]

    Wei Y Q, Xu L, Peng Q M, Wang J P 2019 Acta Phys. Sin 68 158506

    [66]

    van Zeist W-J, Ren Y, Bickelhaupt F M 2010 Sci. China Chem 53 210

    [67]

    Lu X Q, Hu R J, Zhu Y B, Song K P, Qin W 2023 NPG Asia Mater 15 38

    [68]

    Jain A, Voznyy O, Sargent E H 2017 J. Phys. Chem. C 121 7183

    [69]

    Bartel C J, Trewartha A, Wang Q, Dunn A, Jain A, Ceder G 2020 npj Comput. Mater 6 97

    [70]

    Sun Q D, Yin W J 2017 J. Am. Chem. Soc 139 14905

    [71]

    Bartel C J, Sutton C, Goldsmith B R, Ouyang R H, Musgrave C B, Ghiringhelli L M, Scheffler M 2019 Sci. Adv 5 eaav0693

    [72]

    Fedorovskiy A E, Drigo N A, Nazeeruddin M K 2020 Small Methods 4 1900426

    [73]

    Wang M, Hu H, Lin S, Yang P, Yang D 2023 Chin.Sci. Bull 68 3146

    [74]

    Emery A A, Wolverton C 2017 Sci. Data 4 170153

    [75]

    Li Y W, Na G R, Luo S L, He X, Zhang L J 2021 Acta Phys.-Chim. Sin 37 2007015

    [76]

    Gwandu B U, Nawawi Y H, Faruk S, Zauro A S 2024 Equity J. Sci. Technol 10 10

    [77]

    Hao L, Zhou M, Song Y, Ma X, Wu J, Zhu Q, Fu Z, Liu Y, Hou G, Li T 2021 Solar Energy 230 345

    [78]

    Li X, Li J, Wu S, Li Y, Peng C, Wu M, Wu J, Lin J, Ma X, Huang S 2022 Solar Energy 247 315

    [79]

    Lin C X, Liu G L, Xi X, Wang L, Wang Q Q, Sun Q Y, Li M X, Zhu B J, de Lara D P, Zai H C 2022 Materials 15 8142

    [80]

    Shen H, Li X, Zhang X, Zhou H, Zhang H, Liu X, Zhang M, Wu J, Xiang Z, Fang W 2023 Solar Energy 253 240

    [81]

    Li S, Zhou B, Zhao Q, Yang X, Xie Z, Duan Z, Zhao E, Hu Y 2025 Acta Phys. Sin 74 127701

    [82]

    Hunde B R, Woldeyohannes A D 2023 Mater. Today Commun 34 105420

  • [1] Wang Gui-Qiang, Chen Kai-Fei, Meng Fan-Ning. In situ modification of the buried interface enhances the photovoltaic performance of inorganic CsPbI2Br perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.75.20251311
    [2] YUAN Xiang, ZHANG Zifa, WANG Mingji, HE Danmin, LU Yingshen, HONG Feng, JIANG Zuimin, XU Run, WANG Yingmin, MA Zhongquan, SONG Hongwei, XU Fei. Dual-absorption-layer heterojunction strategy for enhancing photovoltaic performance of all-perovskite tandem solar cell. Acta Physica Sinica, doi: 10.7498/aps.74.20250372
    [3] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, doi: 10.7498/aps.73.20240171
    [4] Zhong Ting-Ting, Hao Hui-Ying. Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment. Acta Physica Sinica, doi: 10.7498/aps.73.20241439
    [5] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, doi: 10.7498/aps.73.20240827
    [6] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, doi: 10.7498/aps.72.20230113
    [7] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.70.20210353
    [8] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, doi: 10.7498/aps.70.20210586
    [9] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, doi: 10.7498/aps.68.20190942
    [10] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, doi: 10.7498/aps.68.20190355
    [11] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, doi: 10.7498/aps.68.20190853
    [12] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, doi: 10.7498/aps.68.20190306
    [13] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, doi: 10.7498/aps.68.20190302
    [14] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038404
    [15] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038803
    [16] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038405
    [17] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.038104
    [18] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, doi: 10.7498/aps.63.198502
    [19] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, doi: 10.7498/aps.63.028802
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  7
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  12 November 2025
  • /

    返回文章
    返回