Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of solution processed all-inorganic perovskite solar cell

Wang Ji-Ming Chen Ke Xie Wei-Guang Shi Ting-Ting Liu Peng-Yi Zheng Yi-Fan Zhu Rui

Citation:

Research progress of solution processed all-inorganic perovskite solar cell

Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui
PDF
HTML
Get Citation
  • Photovoltaic technology, which can converse solar illumination into electricity, is crucial to the sustainable development of human civilization. Among them, the organic-inorganic hybrid perovskite solar cell (OIPSC) has become a research front due to its excellent photoelectric characteristics, low production cost and high power conversion efficiency (PCE). Although the PCE of OIPSC has exceeded 24%, the organic components in the perovskite system are sensitive to the decomposion caused by either being exposed to light or heated in high temperature environment. The stability defects have greatly limited the commercialization of perovskite solar cells. Therefore, it is urgent to improve the stability of perovskite solar cells, especially to solve the material decomposition problem. All-inorganic perovskite photovoltaic material, composed of all-inorganic elements, exhibits excellent heat and moisture resistance. Therefore, the development of all-inorganic perovskite solar cells is of great significance for solving the current stability problems in perovskite photovoltaics. In this work, we review the recent research progress of all-inorganic perovskite solar cells, discuss the solution approaches to processing all-inorganic perovskite films, and explore the enhancement of device stability. Our work provides a guideline for further promoting the device stability and PCE.
      Corresponding author: Liu Peng-Yi, tlpy@jnu.edu.cn ; Zheng Yi-Fan, yifan.zheng@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804117, 61674070), the Fundamental Research Funds for the Central Universities, China (Grant No. 21618313), the Key Science and Technology Program of Guangdong Province, China (Grant No. 2017B09090701), and the China Postdoctoral Innovation Talent Foundation (Grant No. 8206200013).
    [1]

    范伟利, 杨宗林, 张振雲, 齐俊杰 2018 物理学报 67 228801Google Scholar

    Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801Google Scholar

    [2]

    Hu Q, Zhao L, Wu J, Gao K, Luo D, Jiang Y, Zhang Z, Zhu C, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Grätzel M, Liu F, Russell T P, Zhu R, Gong Q 2017 Nat. Commun. 8 15688Google Scholar

    [3]

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [4]

    Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell T P, Zhu R, Gong Q 2016 Adv. Mater. 28 10718Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [7]

    NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-12]

    [8]

    Chung I, Lee B, He J, Chang R P H, Kanatzidis M G 2012 Nature 485 486Google Scholar

    [9]

    Chen Z, Wang J J, Ren Y, Yu C, Shum K 2012 Appl. Phys. Lett. 101 093901Google Scholar

    [10]

    Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239

    [11]

    Cui P, Wei D, Ji J, Song D, Li Y, Liu X, Huang J, Wang T, You J, Li M 2017 Sol. RRL 1 1600027Google Scholar

    [12]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [13]

    Park N G, Grätzel M, Miyasaka T, Zhu K, Emery K 2016 Nat. Energy 1 16152Google Scholar

    [14]

    张翱 陈, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhao A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [15]

    Akbulatov A F, Luchkin S Y, Frolova L A, Dremova N N, Gerasimov K L, Zhidkov I S, Anokhin D V, Kurmaev E Z, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 1211Google Scholar

    [16]

    Xiao C, Li Z, Guthrey H, Moseley J, Yang Y, Wozny S, Moutinho H, To B, Berry J J, Gorman B, Yan Y, Zhu K, Al-Jassim M 2015 J. Phys. Chem. C 119 26904Google Scholar

    [17]

    Liang J, Liu J, Jin Z 2017 Sol. RRL 1 1700086Google Scholar

    [18]

    Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 J. Phys. Chem. Lett. 8 4122Google Scholar

    [19]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [20]

    Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995Google Scholar

    [21]

    Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319Google Scholar

    [22]

    Lu C, Li H, Kolodziejski K, Dun C, Huang W, Carroll D, Geyer S M 2018 Nano Res. 11 762

    [23]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92Google Scholar

    [24]

    Huang H, Chen B, Wang Z, Hung T F, Susha A S, Zhong H, Rogach A L 2016 Chem. Sci. 7 5699Google Scholar

    [25]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [26]

    Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688Google Scholar

    [27]

    Wang Y, Zhang T, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [28]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [29]

    Fu L, Zhang Y, Chang B, Li B, Zhou S, Zhang L, Yin L 2018 J. Mater. Chem. A 6 13263Google Scholar

    [30]

    Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261Google Scholar

    [31]

    Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar

    [32]

    Luo P, Zhou Y, Zhou S, Lu Y, Xu C, Xia W, Sun L 2018 Chem. Eng. J. 343 146Google Scholar

    [33]

    Zhang L, Li B, Yuan J, Wang M, Shen T, Huang F, Wen W, Cao G, Tian J 2018 J. Phys. Chem. Lett. 9 3646Google Scholar

    [34]

    Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 5903Google Scholar

    [35]

    García de Arquer F P, Armin A, Meredith P, Sargent E H 2017 Nat. Rev. Mater. 2 16100Google Scholar

    [36]

    Voznyy O, Sutherland B R, Ip A H, Zhitomirsky D, Sargent E H 2017 Nat. Rev. Mater. 2 17026Google Scholar

    [37]

    Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H 2018 ACS Energy Lett. 3 1824Google Scholar

    [38]

    Liang J, Wang C, Zhao P, Lu Z, Ma Y, Xu Z, Wang Y, Zhu H, Hu Y, Zhu G, Ma L, Chen T, Tie Z, Liu J, Jin Z 2017 Nanoscale 9 11841Google Scholar

    [39]

    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [40]

    Ramadan A J, Rochford L A, Fearn S, Snaith H J 2017 J. Phys. Chem. Lett. 8 4172Google Scholar

    [41]

    Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A 2015 Energy Environ. Sci. 8 2928Google Scholar

    [42]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [43]

    Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y, Meng Q 2018 J. Mater. Chem. A 6 19810Google Scholar

    [44]

    Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J, Zhang J, Hao Y 2018 ACS Appl. Energy Mater. 1 4991Google Scholar

    [45]

    Liu C, Li W, Chen J, Fan J, Mai Y, Schropp R E I 2017 Nano Energy 41 75Google Scholar

    [46]

    Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [47]

    Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458Google Scholar

    [48]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. Engl. 57 3787Google Scholar

    [49]

    Hoffman J B, Zaiats G, Wappes I, Kamat P V 2017 Chem. Mat. 29 9767Google Scholar

    [50]

    Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184Google Scholar

    [51]

    Zhao Y, Duan J, Yuan H, Wang Y, Yang X, He B, Tang Q 2019 Sol. RRL 3 1800284Google Scholar

    [52]

    Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H 2017 Sustain. Energy Fuels 1 710Google Scholar

    [53]

    Song L, Wang W, Körstgens V, González D M, Yao Y, Minar N K, Feckl J M, Peters K, Bein T, Fattakhova-Rohlfing D, Santoro G, Roth S V, Müller-Buschbaum P 2016 Adv. Funct. Mater. 26 1498Google Scholar

    [54]

    Su B, Caller-Guzman H A, Korstgens V, Rui Y, Yao Y, Saxena N, Santoro G, Roth S V, Muller-Buschbaum P 2017 ACS Appl. Mater. Inter. 9 43724Google Scholar

    [55]

    Heo J H, Lee M H, Jang M H, Im S H 2016 J. Mater. Chem. A 4 17636Google Scholar

    [56]

    Zheng Y, Kong J, Huang D, Shi W, McMillon-Brown L, Katz H E, Yu J, Taylor A D 2018 Nanoscale 10 11342Google Scholar

    [57]

    Cheng J, Hu R, Meng X, Li Y, Yan X, Yang X, Liao X, Li L, Pei Q, Chong K B 2018 Sol. RRL 2 1800064Google Scholar

    [58]

    Cheng J, Hu R, Wang Q, Zhang C, Xie Z, Long Z, Yang X, Li L 2015 Int. J. Photoenergy 2015 201472

    [59]

    Lau C F J, Deng X, Ma Q, Zheng J, Yun J S, Green M A, Huang S, Ho-Baillie A W Y 2016 ACS Energy Lett. 1 573Google Scholar

    [60]

    Ruan W, Hu Y, Qiu T, Bai F, Zhang S, Xu F 2019 J. Phys. Chem. Solids 127 258Google Scholar

    [61]

    Zhou H, Fan L, He G, Yuan C, Wang Y, Shi S, Sui N, Chen B, Zhang Y, Yao Q, Zhao J, Zhang X, Yin J 2018 RSC Adv. 8 29089Google Scholar

    [62]

    Yang Z, Wang M, Li J, Dou J, Qiu H, Shao J 2018 ACS Appl. Mater. Inter. 10 26387Google Scholar

    [63]

    Liao H, Guo S, Cao S, Wang L, Gao F, Yang Z, Zheng J, Yang W 2018 Adv. Opt. Mater. 6 1800346Google Scholar

    [64]

    Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Jiang H, Li C 2016 J. Phys. Chem. Lett. 7 4253Google Scholar

    [65]

    Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q 2018 Sol. RRL 2 1800164Google Scholar

    [66]

    Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H 2017 Nano Lett. 17 2028Google Scholar

    [67]

    Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar

    [68]

    Lee J H, Bristowe N C, Lee J H, Lee S H, Bristowe P D, Cheetham A K, Jang H M 2016 Chem. Mat. 28 4259Google Scholar

    [69]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [70]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [71]

    Yang D, Li X, Zeng H 2018 Adv. Mater. Inter. 5 1701662Google Scholar

    [72]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [73]

    Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Chen H 2018 Nanoscale 10 9996Google Scholar

    [74]

    Zhao S, Yamamoto K, Iikubo S, Hayase S, Ma T 2018 J. Phys. Chem. Solids 117 117Google Scholar

    [75]

    Akkerman Q A, Meggiolaro D, Dang Z, de Angelis F, Manna L 2017 ACS Energy Lett. 2 2183Google Scholar

    [76]

    Greul E, Petrus Michiel L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972Google Scholar

    [77]

    Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S 2018 Joule 2 1500Google Scholar

    [78]

    Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar

    [79]

    Yang R X, Skelton J M, da Silva E L, Frost J M, Walsh A 2017 J. Phys. Chem. Lett. 8 4720Google Scholar

    [80]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [81]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 3061Google Scholar

    [82]

    Hao F, Stoumpos C C, Chang R P, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar

    [83]

    Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286Google Scholar

    [84]

    Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N 2015 J. Phys. Chem. C 119 1763Google Scholar

    [85]

    Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970Google Scholar

    [86]

    Liang J, Liu Z, Qiu L, Hawash Z, Meng L, Wu Z, Jiang Y, Ono L K, Qi Y 2018 Adv. Energy Mater. 8 1800504Google Scholar

    [87]

    Hu Y, Zhang S, Shu T, Qiu T, Bai F, Ruan W, Xu F 2018 J. Mater. Chem. A 6 20365Google Scholar

    [88]

    Ge S, Wang Y, Xiang Z, Cui Y 2018 ACS Appl. Mater. Inter. 10 24620Google Scholar

    [89]

    Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T 2018 Chem. Mat. 31 6668

    [90]

    Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q 2018 Adv. Energy Mater. 8 1802346Google Scholar

    [91]

    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572Google Scholar

    [92]

    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 J. Am. Chem. Soc. 139 14009Google Scholar

    [93]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [94]

    Dastidar S, Egger D A, Tan L Z, Cromer S B, Dillon A D, Liu S, Kronik L, Rappe A M, Fafarman A T 2016 Nano Lett. 16 3563Google Scholar

    [95]

    Diroll B T, Nedelcu G, Kovalenko M V, Schaller R D 2017 Adv. Funct. Mater. 27 1606750Google Scholar

    [96]

    Mondal N, De A, Samanta A 2018 J. Phys. Chem. Lett. 9 3673Google Scholar

    [97]

    Han G, Hadi H D, Bruno A, Kulkarni S A, Koh T M, Wong L H, Soci C, Mathews N, Zhang S, Mhaisalkar S G 2018 J. Phys. Chem. C 122 13884Google Scholar

    [98]

    Zheng Y, Shi W, Kong J, Huang D, Katz H E, Yu J, Taylor A D 2017 Small Methods 1 1700244Google Scholar

    [99]

    Jeong B, Han H, Choi Y J, Cho S H, Kim E H, Lee S W, Kim J S, Park C, Kim D, Park C 2018 Adv. Funct. Mater. 28 1706401Google Scholar

    [100]

    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Nat. Commun. 9 1076Google Scholar

    [101]

    Ding X, Chen H, Wu Y, Ma S, Dai S, Yang S, Zhu J 2018 J. Mater. Chem. A 6 18258Google Scholar

    [102]

    Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar

    [103]

    Zhang F, Kim D H, Zhu K 2018 Curr. Opin. Electr. 11 105

    [104]

    Heo D Y, Han S M, Woo N S, Kim Y J, Kim T Y, Luo Z, Kim S Y 2018 J. Phys. Chem. C 122 15903Google Scholar

    [105]

    Zhao B, Jin S, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y, Hu J S 2018 J. Am. Chem. Soc. 140 11716Google Scholar

    [106]

    Huang Y, Yin W J, He Y 2018 J. Phys. Chem. C 122 1345

    [107]

    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J 2018 Joule 2 1356Google Scholar

    [108]

    Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619Google Scholar

    [109]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [110]

    Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M 2017 Sci. Adv. 3 eaao4204Google Scholar

    [111]

    Zou C, Xi Y, Huang C Y, Keeler E G, Feng T, Zhu S, Pozzo L D, Lin L Y 2018 Adv. Opt. Mater. 6 1800324Google Scholar

    [112]

    Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W 2018 Joule 2 2450Google Scholar

    [113]

    Wang Q, Jin Z, Chen D, Bai D, Bian H, Sun J, Zhu G, Wang G, Liu S F 2018 Adv. Energy Mater. 8 1800007Google Scholar

    [114]

    Akkerman Q A, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194

    [115]

    Liao J Y, He J W, Xu H, Kuang D B, Su C Y 2012 J. Mater. Chem. 22 7910Google Scholar

    [116]

    Wu W Q, Huang F, Chen D, Cheng Y B, Caruso R A 2015 Adv. Funct. Mater. 25 3264Google Scholar

    [117]

    Xu Y F, Wu W Q, Rao H S, Chen H Y, Kuang D B, Su C Y 2015 Nano Energy 11 621Google Scholar

    [118]

    Zhang D, Eaton S W, Yu Y, Dou L, Yang P 2015 J. Am. Chem. Soc. 137 9230Google Scholar

    [119]

    Im J H, Luo J, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G 2015 Nano Lett. 15 2120Google Scholar

    [120]

    Chen Z, Dong L, Tang H, Yu Y, Ye L, Zang J 2019 CrystEngComm 21 1389Google Scholar

    [121]

    Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741Google Scholar

    [122]

    Waleed A, Tavakoli M M, Gu L, Hussain S, Zhang D, Poddar S, Wang Z, Zhang R, Fan Z 2017 Nano Lett. 17 4951Google Scholar

    [123]

    Chen K, Wu P, Yang W, Su R, Luo D, Yang X, Tu Y, Zhu R, Gong Q 2018 Nano Energy 49 411Google Scholar

    [124]

    Zhang T, Dar M I, Li G, Xu F, Guo N, Grätzel M, Zhao Y 2017 Sci. Adv. 3 e1700841Google Scholar

    [125]

    Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H 2016 Adv. Mater. 28 4861Google Scholar

    [126]

    Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H 2017 ACS Nano 11 2015Google Scholar

    [127]

    Liao J F, Rao H S, Chen B X, Kuang D B, Su C Y 2017 J. Mater. Chem. A 5 2066Google Scholar

    [128]

    Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M 2018 Nanoscale 10 6318Google Scholar

    [129]

    Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y 2018 Joule 2 2065Google Scholar

    [130]

    Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600Google Scholar

    [131]

    Chuang C H, Brown P R, Bulovic V, Bawendi M G 2014 Nat. Mater. 13 796Google Scholar

    [132]

    Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Inter. 5 1800260Google Scholar

    [133]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [134]

    Hirotsu S, Harada J, Iizumi M, Gesi K 1974 J. Phys. Soc. Jpn. 37 1393Google Scholar

    [135]

    Luchkin S Y, Akbulatov A F, Frolova L A, Tsarev S A, Troshin P A, Stevenson K J 2017 Sol. Energy Mater. Sol. Cells 171 205Google Scholar

    [136]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [137]

    Klein-Kedem N, Cahen D, Hodes G 2016 Acc. Chem. Res. 49 347Google Scholar

    [138]

    An R, Zhang F, Zou X, Tang Y, Liang M, Oshchapovskyy I, Liu Y, Honarfar A, Zhong Y, Li C, Geng H, Chen J, Canton S E, Pullerits T, Zheng K 2018 ACS Appl. Mater. Inter. 10 39222Google Scholar

    [139]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photon. 8 128

    [140]

    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290Google Scholar

    [141]

    Chen C W, Kang H W, Hsiao S Y, Yang P F, Chiang K M, Lin H W 2014 Adv. Mater. 26 6647Google Scholar

    [142]

    Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 67Google Scholar

    [143]

    Burwig T, Franzel W, Pistor P 2018 J. Phys. Chem. Lett. 9 4808Google Scholar

    [144]

    Hu Y, Wang Q, Shi YL, Li M, Zhang L, Wang Z K, Liao LS 2017 J. Mater. Chem. C 5 8144Google Scholar

    [145]

    Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 Jpn. J. Appl. Phys. 56 04CS11

    [146]

    Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 ACS Omega 2 4464Google Scholar

    [147]

    Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [148]

    Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469Google Scholar

    [149]

    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219Google Scholar

    [150]

    Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J 2017 Joule 1 371Google Scholar

    [151]

    Chang X, Li W, Zhu L, Liu H, Geng H, Xiang S, Liu J, Chen H 2016 ACS Appl. Mater. Inter. 8 33649Google Scholar

    [152]

    Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q 2018 Mater. Today Energy 10 146Google Scholar

    [153]

    Gong J, Guo P, Benjamin S E, Van Patten P G, Schaller R D, Xu T 2018 J. Energy Chem. 27 1017Google Scholar

    [154]

    Zheng G, Zhu C, Ma J, Zhang X, Tang G, Li R, Chen Y, Li L, Hu J, Hong J, Chen Q, Gao X, Zhou H 2018 Nat. Commun. 9 2793Google Scholar

    [155]

    Zhou Y, Zhao Y 2019 Energy Environ. Sci. 12 1495Google Scholar

    [156]

    Zhu C, Niu X, Fu Y, Li N, Hu C, Chen Y, He X, Na G, Liu P, Zai H, Ge Y, Lu Y, Ke X, Bai Y, Yang S, Chen P, Li Y, Sui M, Zhang L, Zhou H, Chen Q 2019 Nat. Commun. 10 815Google Scholar

    [157]

    Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297Google Scholar

    [158]

    Huang L Y, Lambrecht W R L 2016 Phys. Rev. B 93 195211Google Scholar

    [159]

    Ahmad W, Khan J, Niu G, Tang J 2017 Sol. RRL 1 1700048Google Scholar

    [160]

    Wei S, Yang Y, Kang X, Wang L, Huang L, Pan D 2017 Inorg. Chem. 56 2596Google Scholar

    [161]

    Shojaei F, Yin W J 2018 J. Phys. Chem. C 122 15214Google Scholar

    [162]

    Huang J, Xiang S, Yu J, Li C Z 2019 Energy Environ. Sci. 12 929Google Scholar

    [163]

    Dong S, Liu Y, Hong Z, Yao E, Sun P, Meng L, Lin Y, Huang J, Li G, Yang Y 2017 Nano Lett. 17 5140Google Scholar

    [164]

    Gao K, Zhu Z, Xu B, Jo S B, Kan Y, Peng X, Jen A K 2017 Adv. Mater. 29 1703980Google Scholar

    [165]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

  • 图 1  立方晶格钙钛矿结构ABX3

    Figure 1.  Cubic perovskite structures of ABX3.

    图 2  (a)一步成膜法制备CsPbI3粉末及薄膜[38]; (b)多步成膜法制备CsPbBr3[49]; (c)喷涂[62]; (d)一步静电纺丝工艺[63]

    Figure 2.  Schematic illustration of (a) the one-step solution-phase synthesis and powders and thin film fabrication of CsPbI3[38], (b) the multi-step fabrication process of the cesium lead bromide films[49]; (c) spray-coated[62]; (d) one-step electrospinning technique[63].

    图 3  (a) CsPbBr3, Cs0.98Li0.02PbBr3, Cs0.94Na0.06PbBr3, Cs0.92K0.08PbBr3和Cs0.91Rb0.09PbBr3薄膜的表面扫描电子显微镜(SEM)图像和不同碱金属阳离子掺杂全无机PSCs的伏安特性曲线[65]. (b) 各种金属离子对Pb2+的部分取代(掺杂或合金化), 改善正交CsPbBr3的热稳定性, 使α-CsPbI3稳定化[83]. 下图显示了Sn基全无机钙钛矿中随Br浓度变化的带隙变化曲线图: 从左到右为CsSnI3, CsSnI2Br, CsSnIBr2和CsSnBr3[84]. (c) 在FTO / c-TiO2/m-TiO2基底上制备的不同镧系元素掺杂的钙钛矿薄膜的SEM图像: CsPbBr3, Yb3+-CsPbBr3, Er3+-CsPbBr3, Ho3+-CsPbBr3, Tb3+-CsPbBr3, Sm3+-CsPbBr3[90]; (d)纯CsPbI3和CsPbI3–xClx的化学烧结薄膜的紫外-可见吸收光谱和Abs及PL (右侧, 吸收(细线)和光致发光(粗线))图谱[94,95]; (e) CsPbI3通过PEO进行相稳定的机制和薄膜制备流程[99]

    Figure 3.  (a) Scanning electron microscope (SEM) images of the CsPbBr3, Cs0.98Li0.02PbBr3, Cs0.94Na0.06PbBr3, Cs0.92K0.08PbBr3, and Cs0.91Rb0.09PbBr3 films and J-V curves of different alkali metal cations doped PSCs under air mass 1.5 global[65]. (b) Schematic representation showing partial substitution (doping or alloying) of Pb2+ by various metal ions, which can lead to stabilization of α-CsPbI3 at room temperature and improved thermal stability of orthorhombic CsPbBr3[83]. The graphic is about band gap variation with respect to Br concentration in the Sn based all-inorganic perovskite: CsSnI3, CsSnI2Br, CsSnIBr2 and CsSnBr3 from left to right[84]. (c) The top SEM images of as-prepared perovskite films with different Lanthanide-doping on FTO/c-TiO2/m-TiO2 substrates CsPbBr3, Yb3+-CsPbBr3, Er3+-CsPbBr3, Ho3+-CsPbBr3, Tb3+-CsPbBr3, Sm3+-CsPbBr3[90]. (d) UV-vis absorbance spectra of chemically sintered thin films of pure CsPbI3 and CsPbI3−xClx, absorption spectra (thin lines) and photoluminescence (PL) spectra (thick lines) of CsPbX3 samples[94,95]. (e) PEO added in precursor colloidal solution to improve the stability of perovskite film and the fabrication process of CsPbI3[99].

    图 4  (a) α-CsPbI3 QDs PCSs的结构和基于μGR/ CsPbI3薄膜的PSCs的电荷传输过程和稳定机制的示意图[113]; (b) 基于CsPbI3钙钛矿纳米线的光电探测器装置的能带图, 其中铝和氧化铟锡(indium tin oxides, ITO)作为电极, 基于CsPbI3钙钛矿纳米线的器件的示意图, 具有面积为0.0314 cm2的ITO的顶部圆形电极[122]; (c) 合成2D超薄CsPbBr3纳米片高倍放大SEM图像[125]; (d) 分级界面的太阳能电池的结构示意图和SEM图像[133]

    Figure 4.  (a) Architecture of the completed α-CsPbI3 device and the charge transport process and stabilization mechanism for the μGR/CsPbI3 film based PSCs[113]; (b) band diagram for CsPbI3 perovskite nanowires (NWs)-based photodetector device and CsPbI3 perovskite NWs based device with top circular electorode[122]; (c) 2D-CsPbBr3 nanosheets high-magnification SEM images[125]; (d) schematic structures of devices without and with a graded interface and SEM images of CsPbBrI2 film, CsPbBrI2 NSs/CsPbBrI2 film, CsPbBrI2 QDs/CsPbBrI2 film, and CsPbBrI2 QDs/CsPbBrI2 NSs/CsPbBrI2 film[133].

    图 5  (a) KPFM测量非老化和热老化的CsPbBr3振幅, 晶界上的形貌和功函数信号[135]; (b) CsPbI3在5 kV, 1 nA和点1, 2和3的CL光谱下的SEM图像[16]; (c)在光照射前后比较CsPbBr3和MAPbBr3之间的SEM图像的示意图[15]; (d) CsPbI3钙钛矿薄膜上的梯度Br掺杂和PTA有机阳离子表面钝化的示意图[27]

    Figure 5.  (a) KPFM measurement on the non-aged and thermally aged CsPbBr3 amplitude, cross-sections of topography and work function signals over the grain boundary[135]; (b) SEM image of CsPbI3 under 5 kV, 1 nA, and CL spectra of points 1, 2 and 3 [16]; (c) schematic comparing SEM images between the CsPbBr3 and MAPbBr3 before and after illumination[15]; (d) gradient Br doping and PTA organic cation surface passivation on CsPbI3 perovskite thin film[27].

    表 1  溶液法及其他方法全无机PSCs性能

    Table 1.  Performance of all inorganic perovskite solar cells fabricated by solution or other process.

    电池结构制备方法VOC/VJsc/mA·cm–2FF/%PCE/%参考文献
    FTO/PEDOT:PSS/CsPbI3/PCBM/Al溶液法~0.931.7[26]
    FTO/c-TiO2/CsPbI3/Spiro-OMeTAD/Au溶液法0.8122.9[26]
    FTO/c-TiO2/m-TiO2/CsPbI3/Spiro-OMeTAD/Au溶液法~0.681.3[26]
    FTO/c-TiO2/CsPbI3/CuI/Au溶液法0.8916.0256.598.07[149]
    FTO/c-TiO2/CsPb0.96Bi0.04I3/CuI/Au溶液法0.9718.7672.5913.21[149]
    FTO/TiO2/CsPbI3/Spiro-OMeTAD/Ag溶液法0.6611.9252.474.13[39]
    FTO/c-TiO2/CsPbI3/Carbon溶液法0.6714.31484.65[38]
    FTO/c-TiO2/m-TiO2/CsPbI3/Carbon溶液法0.5813.74443.48[38]
    FTO/TiO2/AX-coatedCsPbI3-QDs/Spiro-OMeTAD/MoOx/Al溶液法1.1615.2476.6313.43[110]
    FTO/TiO2/CsPbI3 QDs/Spiro-OMeTAD/MoOx/Al溶液法1.2313.476510.77[23]
    MgF2/FTO/c-TiO2/m-TiO2/CsPb0.95Ca0.05I3/P3HT/Au溶液法0.9517.98013.5[78]
    ITO/PTAA/zwitterion-CsPb(I0.98Cl0.02)3/PCBM/C60/BCP/Al溶液法1.0914.97011.4[150]
    ITO/TiO2/CsPbBr3/Carbon溶液法0.645.3643.9[151]
    FTO/TiO2/CsPbI2Br-0.02MnCl2/PCBM/Ag溶液法1.17214.378013.47[85]
    FTO/TiO2/CsPbI2Br/PTAA/Au溶液法1.17714.2580.213.45[77]
    FTO/TiO2/CsPbI3 QDs/PTAA/Au溶液法1.19211.7578.310.97[77]
    FTO/c-TiO2/CsPbI3-0.05DETAI3/P3HT/Au溶液法1.0612.21617.89[101]
    FTO/TiO2/quasi-2D Cs0.9PEA0.1PbI3/Spiro-OMeTAD/Au溶液法0.83810.96625.7[128]
    FTO/NiOx/InCl3:CsPbI2Br/ZnO@C60/Ag溶液法1.1515.17813.57[91]
    FTO/NiOx/CsPbI2Br/ZnO@C60/Ag溶液法1.115.17812.92[91]
    FTO/TiO2/CsPbI3/Carbon溶液法0.7918.5659.5[37]
    FTO/TiO2/CsPbI3 QDs/PTB7/MoOx/Ag溶液法1.2712.398012.55[112]
    FTO/c-TiO2/BA2CsPb2I7/Spiro-OMeTAD/Au溶液法0.9578.88574.84[127]
    FTO/TiO2/CsPb0.995Mn0.005I1.01Br1.99/Carbon溶液法0.9913.15577.36[86]
    FTO/bl-TiO2/2 wt% Sn-TiO2/Cs2SnI4Br2/solid state Cs2SnI6 based HTM/LPAH溶液法0.5636.2257.72.025[52]
    FTO/TiO2/CsPbI2Br/CsPbI3 QDs/PTAA/Au溶液法1.20415.2578.714.45[77]
    FTO/c-TiO2/m-TiO2/CsPbBr3/MoS2 QDs/Carbon喷涂法1.3076.5579.46.80[152]
    FTO/c-TiO2/m-TiO2/CsPbIBr2/Spiro-OMeTAD/Au喷涂法1.1217.9706.2[59]
    FTO/SnO2 QDs/CsPbBr3/carbon溶液法1.5727.68759.15[50]
    ITO/PEDOT:PSS/CsPbBr3/PCBM/Ag溶液法0.9825.973.74.5[135]
    FTO/m-TiO2/CsPbBr3/CsBi2/3Br3/carbon溶液法1.5947.7580.910.0[50]
    FTO/SnO2 QDs/CsPbBr3/CsSnBr3 QDs/carbon溶液法1.6107.884.410.6[50]
    FTO/m-TiO2/Cs2AgBiBr6/Spiro-MeOTAD/Ag溶液法0.983.93632.43[76]
    FTO/TiO2/PTABrCsPbI3/Spiro-MeOTAD/Ag溶液法1.10419.1568.517.06[27]
    FTO/TiO2/CsPbI3/Spiro-MeOTAD/Ag溶液法1.05118.8968.513.61[27]
    PET/ITO/TiO2/CsPb0.96Bi0.04I3/Spiro-OMeTAD/Au溶液-气相辅助法1.0515.1172.3211.47[87]
    ITO/TiO2/CsPbI3/P3HT/Au气相法1.06313.871.610.5[142]
    ITO/TiO2/CsPbI3/Au气相法0.9598.7564.7[46]
    ITO/C60/CsPbI2Br/TAPC/MoO3/Ag气相法1.1515.26711.7[140]
    FTO/TiO2/CsPbI3/P3HT/Ag气相法0.7912..06726.79[146]
    DownLoad: CSV
  • [1]

    范伟利, 杨宗林, 张振雲, 齐俊杰 2018 物理学报 67 228801Google Scholar

    Fan W L, Yang Z L, Zhang Z Y, Qi J J 2018 Acta Phys. Sin. 67 228801Google Scholar

    [2]

    Hu Q, Zhao L, Wu J, Gao K, Luo D, Jiang Y, Zhang Z, Zhu C, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Grätzel M, Liu F, Russell T P, Zhu R, Gong Q 2017 Nat. Commun. 8 15688Google Scholar

    [3]

    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar

    [4]

    Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell T P, Zhu R, Gong Q 2016 Adv. Mater. 28 10718Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [7]

    NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-12]

    [8]

    Chung I, Lee B, He J, Chang R P H, Kanatzidis M G 2012 Nature 485 486Google Scholar

    [9]

    Chen Z, Wang J J, Ren Y, Yu C, Shum K 2012 Appl. Phys. Lett. 101 093901Google Scholar

    [10]

    Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239

    [11]

    Cui P, Wei D, Ji J, Song D, Li Y, Liu X, Huang J, Wang T, You J, Li M 2017 Sol. RRL 1 1600027Google Scholar

    [12]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [13]

    Park N G, Grätzel M, Miyasaka T, Zhu K, Emery K 2016 Nat. Energy 1 16152Google Scholar

    [14]

    张翱 陈, 闫君, 张春秀 2018 物理学报 67 106701Google Scholar

    Zhao A, Chen Y L, Yan J, Zhang C X 2018 Acta Phys. Sin. 67 106701Google Scholar

    [15]

    Akbulatov A F, Luchkin S Y, Frolova L A, Dremova N N, Gerasimov K L, Zhidkov I S, Anokhin D V, Kurmaev E Z, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 1211Google Scholar

    [16]

    Xiao C, Li Z, Guthrey H, Moseley J, Yang Y, Wozny S, Moutinho H, To B, Berry J J, Gorman B, Yan Y, Zhu K, Al-Jassim M 2015 J. Phys. Chem. C 119 26904Google Scholar

    [17]

    Liang J, Liu J, Jin Z 2017 Sol. RRL 1 1700086Google Scholar

    [18]

    Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q 2017 J. Phys. Chem. Lett. 8 4122Google Scholar

    [19]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [20]

    Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995Google Scholar

    [21]

    Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319Google Scholar

    [22]

    Lu C, Li H, Kolodziejski K, Dun C, Huang W, Carroll D, Geyer S M 2018 Nano Res. 11 762

    [23]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92Google Scholar

    [24]

    Huang H, Chen B, Wang Z, Hung T F, Susha A S, Zhong H, Rogach A L 2016 Chem. Sci. 7 5699Google Scholar

    [25]

    De Roo J, Ibanez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [26]

    Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688Google Scholar

    [27]

    Wang Y, Zhang T, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [28]

    Lu M, Zhang X, Bai X, Wu H, Shen X, Zhang Y, Zhang W, Zheng W, Song H, Yu W W, Rogach A L 2018 ACS Energy Lett. 3 1571Google Scholar

    [29]

    Fu L, Zhang Y, Chang B, Li B, Zhou S, Zhang L, Yin L 2018 J. Mater. Chem. A 6 13263Google Scholar

    [30]

    Stoddard R J, Rajagopal A, Palmer R L, Braly I L, Jen A K Y, Hillhouse H W 2018 ACS Energy Lett. 3 1261Google Scholar

    [31]

    Travis W, Glover E N K, Bronstein H, Scanlon D O, Palgrave R G 2016 Chem. Sci. 7 4548Google Scholar

    [32]

    Luo P, Zhou Y, Zhou S, Lu Y, Xu C, Xia W, Sun L 2018 Chem. Eng. J. 343 146Google Scholar

    [33]

    Zhang L, Li B, Yuan J, Wang M, Shen T, Huang F, Wen W, Cao G, Tian J 2018 J. Phys. Chem. Lett. 9 3646Google Scholar

    [34]

    Li X, Yu D, Cao F, Gu Y, Wei Y, Wu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 5903Google Scholar

    [35]

    García de Arquer F P, Armin A, Meredith P, Sargent E H 2017 Nat. Rev. Mater. 2 16100Google Scholar

    [36]

    Voznyy O, Sutherland B R, Ip A H, Zhitomirsky D, Sargent E H 2017 Nat. Rev. Mater. 2 17026Google Scholar

    [37]

    Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H 2018 ACS Energy Lett. 3 1824Google Scholar

    [38]

    Liang J, Wang C, Zhao P, Lu Z, Ma Y, Xu Z, Wang Y, Zhu H, Hu Y, Zhu G, Ma L, Chen T, Tie Z, Liu J, Jin Z 2017 Nanoscale 9 11841Google Scholar

    [39]

    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y 2016 J. Phys. Chem. Lett. 7 3603Google Scholar

    [40]

    Ramadan A J, Rochford L A, Fearn S, Snaith H J 2017 J. Phys. Chem. Lett. 8 4172Google Scholar

    [41]

    Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A 2015 Energy Environ. Sci. 8 2928Google Scholar

    [42]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [43]

    Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y, Meng Q 2018 J. Mater. Chem. A 6 19810Google Scholar

    [44]

    Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J, Zhang J, Hao Y 2018 ACS Appl. Energy Mater. 1 4991Google Scholar

    [45]

    Liu C, Li W, Chen J, Fan J, Mai Y, Schropp R E I 2017 Nano Energy 41 75Google Scholar

    [46]

    Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [47]

    Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T, Snaith H J 2016 Adv. Energy Mater. 6 1502458Google Scholar

    [48]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. Int. Ed. Engl. 57 3787Google Scholar

    [49]

    Hoffman J B, Zaiats G, Wappes I, Kamat P V 2017 Chem. Mat. 29 9767Google Scholar

    [50]

    Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184Google Scholar

    [51]

    Zhao Y, Duan J, Yuan H, Wang Y, Yang X, He B, Tang Q 2019 Sol. RRL 3 1800284Google Scholar

    [52]

    Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H 2017 Sustain. Energy Fuels 1 710Google Scholar

    [53]

    Song L, Wang W, Körstgens V, González D M, Yao Y, Minar N K, Feckl J M, Peters K, Bein T, Fattakhova-Rohlfing D, Santoro G, Roth S V, Müller-Buschbaum P 2016 Adv. Funct. Mater. 26 1498Google Scholar

    [54]

    Su B, Caller-Guzman H A, Korstgens V, Rui Y, Yao Y, Saxena N, Santoro G, Roth S V, Muller-Buschbaum P 2017 ACS Appl. Mater. Inter. 9 43724Google Scholar

    [55]

    Heo J H, Lee M H, Jang M H, Im S H 2016 J. Mater. Chem. A 4 17636Google Scholar

    [56]

    Zheng Y, Kong J, Huang D, Shi W, McMillon-Brown L, Katz H E, Yu J, Taylor A D 2018 Nanoscale 10 11342Google Scholar

    [57]

    Cheng J, Hu R, Meng X, Li Y, Yan X, Yang X, Liao X, Li L, Pei Q, Chong K B 2018 Sol. RRL 2 1800064Google Scholar

    [58]

    Cheng J, Hu R, Wang Q, Zhang C, Xie Z, Long Z, Yang X, Li L 2015 Int. J. Photoenergy 2015 201472

    [59]

    Lau C F J, Deng X, Ma Q, Zheng J, Yun J S, Green M A, Huang S, Ho-Baillie A W Y 2016 ACS Energy Lett. 1 573Google Scholar

    [60]

    Ruan W, Hu Y, Qiu T, Bai F, Zhang S, Xu F 2019 J. Phys. Chem. Solids 127 258Google Scholar

    [61]

    Zhou H, Fan L, He G, Yuan C, Wang Y, Shi S, Sui N, Chen B, Zhang Y, Yao Q, Zhao J, Zhang X, Yin J 2018 RSC Adv. 8 29089Google Scholar

    [62]

    Yang Z, Wang M, Li J, Dou J, Qiu H, Shao J 2018 ACS Appl. Mater. Inter. 10 26387Google Scholar

    [63]

    Liao H, Guo S, Cao S, Wang L, Gao F, Yang Z, Zheng J, Yang W 2018 Adv. Opt. Mater. 6 1800346Google Scholar

    [64]

    Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Jiang H, Li C 2016 J. Phys. Chem. Lett. 7 4253Google Scholar

    [65]

    Li Y, Duan J, Yuan H, Zhao Y, He B, Tang Q 2018 Sol. RRL 2 1800164Google Scholar

    [66]

    Nam J K, Chai S U, Cha W, Choi Y J, Kim W, Jung M S, Kwon J, Kim D, Park J H 2017 Nano Lett. 17 2028Google Scholar

    [67]

    Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y B, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar

    [68]

    Lee J H, Bristowe N C, Lee J H, Lee S H, Bristowe P D, Cheetham A K, Jang H M 2016 Chem. Mat. 28 4259Google Scholar

    [69]

    Son D Y, Kim S G, Seo J Y, Lee S H, Shin H, Lee D, Park N G 2018 J. Am. Chem. Soc. 140 1358Google Scholar

    [70]

    Krieg F, Ochsenbein S T, Yakunin S, Ten Brinck S, Aellen P, Suess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C J, Infante I, Kovalenko M V 2018 ACS Energy Lett. 3 641Google Scholar

    [71]

    Yang D, Li X, Zeng H 2018 Adv. Mater. Inter. 5 1701662Google Scholar

    [72]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [73]

    Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Chen H 2018 Nanoscale 10 9996Google Scholar

    [74]

    Zhao S, Yamamoto K, Iikubo S, Hayase S, Ma T 2018 J. Phys. Chem. Solids 117 117Google Scholar

    [75]

    Akkerman Q A, Meggiolaro D, Dang Z, de Angelis F, Manna L 2017 ACS Energy Lett. 2 2183Google Scholar

    [76]

    Greul E, Petrus Michiel L, Binek A, Docampo P, Bein T 2017 J. Mater. Chem. A 5 19972Google Scholar

    [77]

    Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S 2018 Joule 2 1500Google Scholar

    [78]

    Lau C F J, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A 2018 J. Mater. Chem. A 6 5580Google Scholar

    [79]

    Yang R X, Skelton J M, da Silva E L, Frost J M, Walsh A 2017 J. Phys. Chem. Lett. 8 4720Google Scholar

    [80]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [81]

    Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 3061Google Scholar

    [82]

    Hao F, Stoumpos C C, Chang R P, Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094Google Scholar

    [83]

    Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286Google Scholar

    [84]

    Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N 2015 J. Phys. Chem. C 119 1763Google Scholar

    [85]

    Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu S F 2018 ACS Energy Lett. 3 970Google Scholar

    [86]

    Liang J, Liu Z, Qiu L, Hawash Z, Meng L, Wu Z, Jiang Y, Ono L K, Qi Y 2018 Adv. Energy Mater. 8 1800504Google Scholar

    [87]

    Hu Y, Zhang S, Shu T, Qiu T, Bai F, Ruan W, Xu F 2018 J. Mater. Chem. A 6 20365Google Scholar

    [88]

    Ge S, Wang Y, Xiang Z, Cui Y 2018 ACS Appl. Mater. Inter. 10 24620Google Scholar

    [89]

    Jena A K, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T 2018 Chem. Mat. 31 6668

    [90]

    Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q 2018 Adv. Energy Mater. 8 1802346Google Scholar

    [91]

    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Gao X, Xue Q, Yip H L, Fan J, Schropp R E I, Mai Y 2019 Adv. Energy Mater. 9 1803572Google Scholar

    [92]

    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z 2017 J. Am. Chem. Soc. 139 14009Google Scholar

    [93]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [94]

    Dastidar S, Egger D A, Tan L Z, Cromer S B, Dillon A D, Liu S, Kronik L, Rappe A M, Fafarman A T 2016 Nano Lett. 16 3563Google Scholar

    [95]

    Diroll B T, Nedelcu G, Kovalenko M V, Schaller R D 2017 Adv. Funct. Mater. 27 1606750Google Scholar

    [96]

    Mondal N, De A, Samanta A 2018 J. Phys. Chem. Lett. 9 3673Google Scholar

    [97]

    Han G, Hadi H D, Bruno A, Kulkarni S A, Koh T M, Wong L H, Soci C, Mathews N, Zhang S, Mhaisalkar S G 2018 J. Phys. Chem. C 122 13884Google Scholar

    [98]

    Zheng Y, Shi W, Kong J, Huang D, Katz H E, Yu J, Taylor A D 2017 Small Methods 1 1700244Google Scholar

    [99]

    Jeong B, Han H, Choi Y J, Cho S H, Kim E H, Lee S W, Kim J S, Park C, Kim D, Park C 2018 Adv. Funct. Mater. 28 1706401Google Scholar

    [100]

    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L 2018 Nat. Commun. 9 1076Google Scholar

    [101]

    Ding X, Chen H, Wu Y, Ma S, Dai S, Yang S, Zhu J 2018 J. Mater. Chem. A 6 18258Google Scholar

    [102]

    Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar

    [103]

    Zhang F, Kim D H, Zhu K 2018 Curr. Opin. Electr. 11 105

    [104]

    Heo D Y, Han S M, Woo N S, Kim Y J, Kim T Y, Luo Z, Kim S Y 2018 J. Phys. Chem. C 122 15903Google Scholar

    [105]

    Zhao B, Jin S, Huang S, Liu N, Ma J Y, Xue D J, Han Q, Ding J, Ge Q Q, Feng Y, Hu J S 2018 J. Am. Chem. Soc. 140 11716Google Scholar

    [106]

    Huang Y, Yin W J, He Y 2018 J. Phys. Chem. C 122 1345

    [107]

    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J 2018 Joule 2 1356Google Scholar

    [108]

    Lin D, Zhang T, Wang J, Long M, Xie F, Chen J, Wu B, Shi T, Yan K, Xie W, Liu P, Xu J 2019 Nano Energy 59 619Google Scholar

    [109]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [110]

    Sanehira E M, Marshall A R, Christians J A, Harvey S P, Ciesielski P N, Wheeler L M, Schulz P, Lin L Y, Beard M C, Luther J M 2017 Sci. Adv. 3 eaao4204Google Scholar

    [111]

    Zou C, Xi Y, Huang C Y, Keeler E G, Feng T, Zhu S, Pozzo L D, Lin L Y 2018 Adv. Opt. Mater. 6 1800324Google Scholar

    [112]

    Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W 2018 Joule 2 2450Google Scholar

    [113]

    Wang Q, Jin Z, Chen D, Bai D, Bian H, Sun J, Zhu G, Wang G, Liu S F 2018 Adv. Energy Mater. 8 1800007Google Scholar

    [114]

    Akkerman Q A, Gandini M, Di Stasio F, Rastogi P, Palazon F, Bertoni G, Ball J M, Prato M, Petrozza A, Manna L 2016 Nat. Energy 2 16194

    [115]

    Liao J Y, He J W, Xu H, Kuang D B, Su C Y 2012 J. Mater. Chem. 22 7910Google Scholar

    [116]

    Wu W Q, Huang F, Chen D, Cheng Y B, Caruso R A 2015 Adv. Funct. Mater. 25 3264Google Scholar

    [117]

    Xu Y F, Wu W Q, Rao H S, Chen H Y, Kuang D B, Su C Y 2015 Nano Energy 11 621Google Scholar

    [118]

    Zhang D, Eaton S W, Yu Y, Dou L, Yang P 2015 J. Am. Chem. Soc. 137 9230Google Scholar

    [119]

    Im J H, Luo J, Franckevičius M, Pellet N, Gao P, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Park N G 2015 Nano Lett. 15 2120Google Scholar

    [120]

    Chen Z, Dong L, Tang H, Yu Y, Ye L, Zang J 2019 CrystEngComm 21 1389Google Scholar

    [121]

    Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741Google Scholar

    [122]

    Waleed A, Tavakoli M M, Gu L, Hussain S, Zhang D, Poddar S, Wang Z, Zhang R, Fan Z 2017 Nano Lett. 17 4951Google Scholar

    [123]

    Chen K, Wu P, Yang W, Su R, Luo D, Yang X, Tu Y, Zhu R, Gong Q 2018 Nano Energy 49 411Google Scholar

    [124]

    Zhang T, Dar M I, Li G, Xu F, Guo N, Grätzel M, Zhao Y 2017 Sci. Adv. 3 e1700841Google Scholar

    [125]

    Song J, Xu L, Li J, Xue J, Dong Y, Li X, Zeng H 2016 Adv. Mater. 28 4861Google Scholar

    [126]

    Li X, Yu D, Chen J, Wang Y, Cao F, Wei Y, Wu Y, Wang L, Zhu Y, Sun Z, Ji J, Shen Y, Sun H, Zeng H 2017 ACS Nano 11 2015Google Scholar

    [127]

    Liao J F, Rao H S, Chen B X, Kuang D B, Su C Y 2017 J. Mater. Chem. A 5 2066Google Scholar

    [128]

    Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M 2018 Nanoscale 10 6318Google Scholar

    [129]

    Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y 2018 Joule 2 2065Google Scholar

    [130]

    Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600Google Scholar

    [131]

    Chuang C H, Brown P R, Bulovic V, Bawendi M G 2014 Nat. Mater. 13 796Google Scholar

    [132]

    Wang S, Sakurai T, Wen W, Qi Y 2018 Adv. Mater. Inter. 5 1800260Google Scholar

    [133]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [134]

    Hirotsu S, Harada J, Iizumi M, Gesi K 1974 J. Phys. Soc. Jpn. 37 1393Google Scholar

    [135]

    Luchkin S Y, Akbulatov A F, Frolova L A, Tsarev S A, Troshin P A, Stevenson K J 2017 Sol. Energy Mater. Sol. Cells 171 205Google Scholar

    [136]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T, McGehee M D 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [137]

    Klein-Kedem N, Cahen D, Hodes G 2016 Acc. Chem. Res. 49 347Google Scholar

    [138]

    An R, Zhang F, Zou X, Tang Y, Liang M, Oshchapovskyy I, Liu Y, Honarfar A, Zhong Y, Li C, Geng H, Chen J, Canton S E, Pullerits T, Zheng K 2018 ACS Appl. Mater. Inter. 10 39222Google Scholar

    [139]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Graetzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photon. 8 128

    [140]

    Chen C Y, Lin H Y, Chiang K M, Tsai W L, Huang Y C, Tsao C S, Lin H W 2017 Adv. Mater. 29 1605290Google Scholar

    [141]

    Chen C W, Kang H W, Hsiao S Y, Yang P F, Chiang K M, Lin H W 2014 Adv. Mater. 26 6647Google Scholar

    [142]

    Frolova L A, Anokhin D V, Piryazev A A, Luchkin S Y, Dremova N N, Stevenson K J, Troshin P A 2017 J. Phys. Chem. Lett. 8 67Google Scholar

    [143]

    Burwig T, Franzel W, Pistor P 2018 J. Phys. Chem. Lett. 9 4808Google Scholar

    [144]

    Hu Y, Wang Q, Shi YL, Li M, Zhang L, Wang Z K, Liao LS 2017 J. Mater. Chem. C 5 8144Google Scholar

    [145]

    Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 Jpn. J. Appl. Phys. 56 04CS11

    [146]

    Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles T S, Karakawa M, Kuwabara T, Takahashi K, Hayase S, Taima T 2017 ACS Omega 2 4464Google Scholar

    [147]

    Chen M, Ju M G, Carl A D, Zong Y, Grimm R L, Gu J, Zeng X C, Zhou Y, Padture N P 2018 Joule 2 558Google Scholar

    [148]

    Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469Google Scholar

    [149]

    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219Google Scholar

    [150]

    Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J 2017 Joule 1 371Google Scholar

    [151]

    Chang X, Li W, Zhu L, Liu H, Geng H, Xiang S, Liu J, Chen H 2016 ACS Appl. Mater. Inter. 8 33649Google Scholar

    [152]

    Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q 2018 Mater. Today Energy 10 146Google Scholar

    [153]

    Gong J, Guo P, Benjamin S E, Van Patten P G, Schaller R D, Xu T 2018 J. Energy Chem. 27 1017Google Scholar

    [154]

    Zheng G, Zhu C, Ma J, Zhang X, Tang G, Li R, Chen Y, Li L, Hu J, Hong J, Chen Q, Gao X, Zhou H 2018 Nat. Commun. 9 2793Google Scholar

    [155]

    Zhou Y, Zhao Y 2019 Energy Environ. Sci. 12 1495Google Scholar

    [156]

    Zhu C, Niu X, Fu Y, Li N, Hu C, Chen Y, He X, Na G, Liu P, Zai H, Ge Y, Lu Y, Ke X, Bai Y, Yang S, Chen P, Li Y, Sui M, Zhang L, Zhou H, Chen Q 2019 Nat. Commun. 10 815Google Scholar

    [157]

    Ju M G, Chen M, Zhou Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C 2018 ACS Energy Lett. 3 297Google Scholar

    [158]

    Huang L Y, Lambrecht W R L 2016 Phys. Rev. B 93 195211Google Scholar

    [159]

    Ahmad W, Khan J, Niu G, Tang J 2017 Sol. RRL 1 1700048Google Scholar

    [160]

    Wei S, Yang Y, Kang X, Wang L, Huang L, Pan D 2017 Inorg. Chem. 56 2596Google Scholar

    [161]

    Shojaei F, Yin W J 2018 J. Phys. Chem. C 122 15214Google Scholar

    [162]

    Huang J, Xiang S, Yu J, Li C Z 2019 Energy Environ. Sci. 12 929Google Scholar

    [163]

    Dong S, Liu Y, Hong Z, Yao E, Sun P, Meng L, Lin Y, Huang J, Li G, Yang Y 2017 Nano Lett. 17 5140Google Scholar

    [164]

    Gao K, Zhu Z, Xu B, Jo S B, Kan Y, Peng X, Jen A K 2017 Adv. Mater. 29 1703980Google Scholar

    [165]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

  • [1] Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology. Acta Physica Sinica, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [3] Jing Bin, Xu Meng, Peng Cong, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng. Sol-gel indium-zinc-tin-oxide thin film transistor pixel array with superior stabilityunder negative bias illumination stress. Acta Physica Sinica, 2022, 71(13): 138502. doi: 10.7498/aps.71.20220154
    [4] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [6] Yu Peng, Cao Sheng, Zeng Ruo-Sheng, Zou Bing-Suo, Zhao Jia-Long. Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping. Acta Physica Sinica, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [7] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [8] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [9] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [10] Zhang Shi-Yu, Yu Zhi-Nong, Cheng Jin, Wu De-Long, Li Xu-Yang, Xue Wei. Effects of annealing temperature and Ga content on properties of solution-processed InGaZnO thin film. Acta Physica Sinica, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [11] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [12] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [14] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [15] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [16] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [18] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [19] Luo Chong, Meng Zhi-Guo, Wang Shuo, Xiong Shao-Zhen. Preparation of poly-slicon thin film by aluminum induced crystallization based on Al-salt solution. Acta Physica Sinica, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  24676
  • PDF Downloads:  652
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2019
  • Accepted Date:  04 April 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回