Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Inkjet printed perovskite solar cells: progress and prospects

Xia Jun-Min Liang Chao Xing Gui-Chuan

Citation:

Inkjet printed perovskite solar cells: progress and prospects

Xia Jun-Min, Liang Chao, Xing Gui-Chuan
PDF
HTML
Get Citation
  • In the field of photovoltaic materials, perovskite has attracted extensive attention during the past years, owing to its excellent photovoltaic properties, including high charge carrier mobility, low exciton binding energy, long charge carrier diffusion length, broad light absorption spectrum, large absorption coefficient, and low-cost solution processability. However, due to the limitations of film preparation methods (typical spin coating), industrial large-scale production of perovskite solar cells is still in infancy. The inkjet printing technology is a significant manufacturing technology developed from home and office printing and widely used in various printing electronics industries. Compared with other deposition methods, it possesses many advantages, including low cost, high material utilization, high patterning precision, etc. As a direct writing technology, the inkjet printing has shown great industrial potential and is expected to be employed in the industrialization of perovskite solar cells. In this paper, we review the research progress of perovskite solar cells fabricated via the inkjet printing and the application of inkjet printing technology to various functional layers (electrode, hole transport layer, electron transport layer, perovskite active layer). Finally, the challenges of inkjet printed perovskite solar cells at this stage are discussed, and the commercialization direction of inkjet printed perovskite solar cells is also pointed out.
      Corresponding author: Xing Gui-Chuan, gcxing@umac.mo
    • Funds: Project supported by the Macau Science and Technology Development Funds, China (Grant Nos. FDCT-116/2016/A3, FDCT-091/2017/A2, FDCT-014/2017/AMJ), the Research Grants from University of Macau, China (Grant Nos. SRG2016-00087-FST, MYRG2018-00148-IAPME), the National Natural Science Foundation of China (Grant Nos. 91733302, 61605073, 2015CB932200), and the Young 1000 Talents Global Recruitment Program of China.
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Chilvery A K, Batra A K, Yang B, Xiao K, Guggilla P, Aggarwal M D, Surabhi R, Lal R B, Currie J R, Penn B G 2015 J. Photon. Energy 5 57402Google Scholar

    [3]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [4]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764Google Scholar

    [5]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [6]

    Kim J, Lee S H, Lee J H, Hong K H 2014 Phys. Chem. Lett. 5 1312Google Scholar

    [7]

    Peng X J, Yuan J, Shen S, Gao M, Chesman A S R, Yin H, Cheng J S, Zhang Q, Angmo D 2017 Adv. Funct. Mater. 27 1703704Google Scholar

    [8]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [9]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [11]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nature Photon. 7 486Google Scholar

    [12]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [13]

    Nie W, Tsai H, Asadpour R, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Mohite A D, 2015 Science 347 522Google Scholar

    [14]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [15]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [16]

    NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-04]

    [17]

    Liang C, Zhao D, Li Y, Li X, Peng S, Shao G, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar

    [18]

    Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 1600457

    [19]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [20]

    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energy Environ. Sci. 7 2934Google Scholar

    [21]

    Liu T, Zhou Y, Hu Q, Chen K, Zhang Y, Yang W, Wu J, Ye F, Luo D, Zhu K, Padture N P, Liu F, Russell T, Zhu R, Gong Q 2017 Sci. China: Mater. 60 608Google Scholar

    [22]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [23]

    Gao P, Graetzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448Google Scholar

    [24]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [25]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [26]

    Singh M, Haverinen H M, Dhagat P, Jabbour G E 2010 Adv. Mater. 22 673Google Scholar

    [27]

    Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994Google Scholar

    [28]

    Basaran O A, Gao H, Bhat P P 2013 Annu. Rev. Fluid Mech. 45 85Google Scholar

    [29]

    Derby B 2010 Annu. Rev. Mater. Res. 40 395Google Scholar

    [30]

    Clay K, Gardner I, Bresler E, Seal M, Speakman S 2002 Circuit World 28 24Google Scholar

    [31]

    van den Berg A M, de Laat A W, Smith P J, Perelaer J, Schubert U S 2007 J. Mater. Chem. 17 677Google Scholar

    [32]

    Tian D L, Song Y L, Jiang L 2013 Chem. Soc. Rev. 42 5184Google Scholar

    [33]

    Yin Z, Huang Y, Bu N, Wang X, Xiong Y 2010 Sci. Bull. 55 3383Google Scholar

    [34]

    Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C 2017 ACS Nano 11 2008Google Scholar

    [35]

    Kuang M X, Wang L B, Song Y L 2014 Adv. Mat. 26 6950Google Scholar

    [36]

    Calvert P 2001 Chem. Mater. 13 3299Google Scholar

    [37]

    Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Adv. Mater. 27 1241Google Scholar

    [38]

    Wei Z H, Chen H N, Yan K Y, Yang S L 2014 Angew. Chem. Int. Ed. 53 13239Google Scholar

    [39]

    Li S G, Jiang K J, Su M J, Cui X P, Huang J H, Zhang Q Q, Zhou X Q, Yang L M, Song Y L 2015 J. Mater. Chem. A 3 9092Google Scholar

    [40]

    Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D 2017 Adv. Mater. Technol. 2 1600183Google Scholar

    [41]

    Hashmi S G, Tiihonen A, Martineau D, Ozkan M, Vivo P, Kaunisto K, Ulla V, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar

    [42]

    Bag M, Jiang Z, Renna L A, Jeong S P, Rotello V M, Venkataraman D 2016 Mater. Lett. 164 472Google Scholar

    [43]

    Jiang Z, Bag M, Renna L, Jeong S P, Rotello V, Venkataraman D 2016 HAL 01386295

    [44]

    Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold U W, Hernandez-Sosa G, Lemmer U, Quintilla A 2016 J. Mater. Chem. A 4 19207Google Scholar

    [45]

    Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217

    [46]

    Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar

    [47]

    Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar

    [48]

    Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764

    [49]

    Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Habicht K, Schmager R, Mertens A, Azmi R, Klohr L, Schwenzer J A, Hetterich M, Lemmer U, Richards B S, Powalla M, Paetzold U W 2019 Adv. Energy Mater. 9 1802995

    [50]

    Xie M, Lu H, Zhang L, Wang J, Luo Q, Lin J, Ba L, Liu H, Shen W, Shi L 2018 Solar RRL 2 1700184

    [51]

    Huckaba A J, Lee Y, Xia R, Paek S, Bassetto V C, Oveisi E, Lesch A, Kinge S, Dyson P J, Girault H 2019 Energy Technol. 7 317

    [52]

    Gheno A, Huang Y, Bouclé J, Ratier B, Rolland A, Even J, Vedraine S 2018 Solar RRL 2 1800191

  • 图 1  (a)钙钛矿晶体结构; (b) PeSCs器件结构, n-i-p (左)和p-i-n (右).

    Figure 1.  (a) Structure of perovskite crystal; (b) device structure of PeSCs, n-i-p (left) and p-i-n (right).

    图 2  IJP示意图 (a) CIJP; (b) DODIJP[28]

    Figure 2.  Schematic diagram of IJP: (a) CIJP; (b) DODIJP[28].

    图 3  IJP法制备钙钛矿薄膜 (a) RIJP[43]; (b)一步IJP法[45]; (c)两步IJP法与旋涂法制备薄膜的对比[46]; (d) IJP三阳离子PeSCs的断面扫描电子显微镜(scanning electron microscope, SEM)图[47]; (e)结合LDS层的PeSCs器件结构[48]; (f)在室灯下掺杂浓度分别为5 wt% (左)和0.5 wt% (右)的IJP LDS层照片[48]; (g) NiOx作为HTLs的器件结构[49]; (h)使用不同方法(旋涂和IJP)在NiOx上沉积钙钛矿层的电池性能比较[49]; (i)紫外照射下器件降解情况[49]

    Figure 3.  Inkjet printed perovskite thin films: (a) Schematic diagram of RIJP[43]; (b) fabrication process of one-step inkjet printing[45]; (c) comparison of thin films on mesoporous TiO2 layer using inkjet printing and spin-coating[46]; (d) cross-sectional SEM images of inkjet-printed triple cation perovskite solar cells[47]; (e) device structure of LDS based perovskite solar cells[48]; (f) photograph of inkjet-printed LDS layers with a doping concentration of 5 wt% (left) and 0.5 wt% (right) under room light[49]; (g) structure of the perovskite solar cells with the NiOx as the HTLs[49]; (h) performance comparison of inkjet-printed and spin-coated perovskite solar cells with the NiOx as the HTLs[49]; (i) device degradation under intense UV radiation[49].

    图 4  IJP法制备载流子传输层和电极 (a) IJP AgNW沉积于PVSK/PC61BM/PEI表面SEM照片[50]; (b)采用旋涂法和IJP法制备的介孔TiO2器件的伏安特性曲线[51]; (c) IJP TiO2及钙钛矿层的器件伏安特性曲线[51].

    Figure 4.  Inkjet printed carrier transport layer and electrode: (a) SEM image of printed AgNW electrode on PVSK/PC61BM/PEI surface[50]; (b) voltage-current characteristic curves of solar cells with spin-coated and inkjet-printed mesoporous TiO2[51]; (c) voltage-current characteristic curve of the solar cell with inkjet prited TiO2 and perovskite layers[51].

    表 1  基于IJP技术制备的PeSCs的性能与结构

    Table 1.  Summary of structure and performance of inkjet printed PeSCs.

    IJP层 器件结构面积/cm2性能参考
    文献
    Voc/VJsc/mA·cm–2FF/%PCE/%
    Top electrode and active layerGlass/FTO/TiO2/MAPbI3(IJP)/C(IJP)0.150.9517.2071.011.60[38]
    Active layerGlass/FTO/com-TiO2/meso-TiO2/MAPbI3(IJP)/spiro-MeOTAD/Au0.040.9119.5569.012.30[39]
    Active layerGlass/FTO/com-TiO2/meso-TiO2/ZrO2/Perovskite (IJP)/C0.160.8415.3065.78.47[40]
    Active layerGlass/ITO/PEDOT:PSS/PbI2-(2MA:1FA)I(IJP)/PCBM/Al0.8718.7768.011.10[42]
    Active layerGlass/ITO/PEDOT:PSS/Pb(OAc)2-CH3NH3I(IJP)/PCBM/Al0.504.2844.40.94[43]
    Active layerGlass/FTO/com-TiO2/MAPbI3(IJP)/spiro-MeOTAD/Au0.091.0018.405611.30[44]
    Active layerGlass/FTO/TiO2/C60/MAPbI3(IJP)/spiro-MeOTAD/Au0.04
    4
    1.08
    1.04
    22.71
    20.40
    69.58
    62.57
    17.04
    13.27
    [45]
    Active layerGlass/FTO/c-TiO2/m-TiO2/PbI2(IJP) + MAI(Vapor)/Au0.041.0622.5175.118.64[46]
    2.021.0621.8876.517.74
    Active layerGlass/FTO/TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3(IJP)/spiro-MeOTAD/Au0.091.0621.56712.9[47]
    Active layerLDS(IJP)/Glass/FTO/TiO2/Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3(IJP)/spiro-MeOTAD/Au0.091.0621.5679.4[48]
    Active layerglass/ITO/NiOx/Csx(FA0.83MA0.17)1–xPb (Br0.15I0.85)3(IJP)/C60/BCP/Au0.1051.0922.779.019.5[49]
    Top electrodeITO/PEDOT: PSS/CH3NH3PbClxI3–x/
    PC61BM/PEI/AgNW(IJP)
    0.091.0418.177514.17[50]
    ETLs and active layerGlass/FTO/com-TiO2/meso-TiO2(IJP)/perovskite (IJP)/spiro-MeOTAD/Au< 11.0522.6576.318.29[51]
    ETLs, active layer and HTLsITO/WOx(IJP)/CH3NH3PbI3–xClx(IJP)/
    spiro-MeOTAD(IJP)/Au
    0.74422.16510.7[52]
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Chilvery A K, Batra A K, Yang B, Xiao K, Guggilla P, Aggarwal M D, Surabhi R, Lal R B, Currie J R, Penn B G 2015 J. Photon. Energy 5 57402Google Scholar

    [3]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [4]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764Google Scholar

    [5]

    Xing G C, Mathews N, Sun S Y, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [6]

    Kim J, Lee S H, Lee J H, Hong K H 2014 Phys. Chem. Lett. 5 1312Google Scholar

    [7]

    Peng X J, Yuan J, Shen S, Gao M, Chesman A S R, Yin H, Cheng J S, Zhang Q, Angmo D 2017 Adv. Funct. Mater. 27 1703704Google Scholar

    [8]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [9]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [10]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [11]

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nature Photon. 7 486Google Scholar

    [12]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [13]

    Nie W, Tsai H, Asadpour R, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M, Wang H, Mohite A D, 2015 Science 347 522Google Scholar

    [14]

    Jiang Q, Chu Z, Wang P, Yang X, Liu H, Wang Y, Yin Z, Wu J, Zhang X, You J 2017 Adv. Mater. 29 1703852Google Scholar

    [15]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H 2017 Science 356 1376Google Scholar

    [16]

    NREL 2019 Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2019-03-04]

    [17]

    Liang C, Zhao D, Li Y, Li X, Peng S, Shao G, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar

    [18]

    Liu T, Chen K, Hu Q, Zhu R, Gong Q 2016 Adv. Energy Mater. 1600457

    [19]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [20]

    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L 2014 Energy Environ. Sci. 7 2934Google Scholar

    [21]

    Liu T, Zhou Y, Hu Q, Chen K, Zhang Y, Yang W, Wu J, Ye F, Luo D, Zhu K, Padture N P, Liu F, Russell T, Zhu R, Gong Q 2017 Sci. China: Mater. 60 608Google Scholar

    [22]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [23]

    Gao P, Graetzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448Google Scholar

    [24]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [25]

    Chen Q, Zhou H P, Hong Z R, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622Google Scholar

    [26]

    Singh M, Haverinen H M, Dhagat P, Jabbour G E 2010 Adv. Mater. 22 673Google Scholar

    [27]

    Roldán-Carmona C, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994Google Scholar

    [28]

    Basaran O A, Gao H, Bhat P P 2013 Annu. Rev. Fluid Mech. 45 85Google Scholar

    [29]

    Derby B 2010 Annu. Rev. Mater. Res. 40 395Google Scholar

    [30]

    Clay K, Gardner I, Bresler E, Seal M, Speakman S 2002 Circuit World 28 24Google Scholar

    [31]

    van den Berg A M, de Laat A W, Smith P J, Perelaer J, Schubert U S 2007 J. Mater. Chem. 17 677Google Scholar

    [32]

    Tian D L, Song Y L, Jiang L 2013 Chem. Soc. Rev. 42 5184Google Scholar

    [33]

    Yin Z, Huang Y, Bu N, Wang X, Xiong Y 2010 Sci. Bull. 55 3383Google Scholar

    [34]

    Cao X, Wu F, Lau C, Liu Y, Liu Q, Zhou C 2017 ACS Nano 11 2008Google Scholar

    [35]

    Kuang M X, Wang L B, Song Y L 2014 Adv. Mat. 26 6950Google Scholar

    [36]

    Calvert P 2001 Chem. Mater. 13 3299Google Scholar

    [37]

    Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E, Subbiah J, Jones D J, Kim D Y, Vak D 2015 Adv. Mater. 27 1241Google Scholar

    [38]

    Wei Z H, Chen H N, Yan K Y, Yang S L 2014 Angew. Chem. Int. Ed. 53 13239Google Scholar

    [39]

    Li S G, Jiang K J, Su M J, Cui X P, Huang J H, Zhang Q Q, Zhou X Q, Yang L M, Song Y L 2015 J. Mater. Chem. A 3 9092Google Scholar

    [40]

    Hashmi S G, Martineau D, Li X, Ozkan M, Tiihonen A, Dar M I, Sarikka T, Zakeeruddin S M, Paltakari J, Lund P D 2017 Adv. Mater. Technol. 2 1600183Google Scholar

    [41]

    Hashmi S G, Tiihonen A, Martineau D, Ozkan M, Vivo P, Kaunisto K, Ulla V, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar

    [42]

    Bag M, Jiang Z, Renna L A, Jeong S P, Rotello V M, Venkataraman D 2016 Mater. Lett. 164 472Google Scholar

    [43]

    Jiang Z, Bag M, Renna L, Jeong S P, Rotello V, Venkataraman D 2016 HAL 01386295

    [44]

    Mathies F, Abzieher T, Hochstuhl A, Glaser K, Colsmann A, Paetzold U W, Hernandez-Sosa G, Lemmer U, Quintilla A 2016 J. Mater. Chem. A 4 19207Google Scholar

    [45]

    Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217

    [46]

    Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar

    [47]

    Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar

    [48]

    Schlisske S, Mathies F, Busko D, Strobel N, Rödlmeier T, Richards B S, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764

    [49]

    Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Habicht K, Schmager R, Mertens A, Azmi R, Klohr L, Schwenzer J A, Hetterich M, Lemmer U, Richards B S, Powalla M, Paetzold U W 2019 Adv. Energy Mater. 9 1802995

    [50]

    Xie M, Lu H, Zhang L, Wang J, Luo Q, Lin J, Ba L, Liu H, Shen W, Shi L 2018 Solar RRL 2 1700184

    [51]

    Huckaba A J, Lee Y, Xia R, Paek S, Bassetto V C, Oveisi E, Lesch A, Kinge S, Dyson P J, Girault H 2019 Energy Technol. 7 317

    [52]

    Gheno A, Huang Y, Bouclé J, Ratier B, Rolland A, Even J, Vedraine S 2018 Solar RRL 2 1800191

  • [1] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] Gao Bo-Wen, Meng Jing. Large area and flexible CH3NH3PbI3 perovskite solar cell fabricated by all ink jet printing. Acta Physica Sinica, 2021, 70(20): 208801. doi: 10.7498/aps.70.20210788
    [3] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [4] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [5] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [6] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [7] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [8] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [9] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [10] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [11] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [12] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [13] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [14] Xia Xiang, Liu Xi-Zhe. Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [15] Ding Mei-Bin, Lou Chao-Gang, Wang Qi-Long, Sun Qiang. Influence of quantum wells on the quantum efficiency of GaAs solar cells. Acta Physica Sinica, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [16] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [17] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [18] Wang Hai-Xiao, Zheng Xin-He, Wu Yuan-Yuan, Gan Xing-Yuan, Wang Nai-Ming, Yang Hui. Well layer design for 1eV absorption band edge of GaInAs/GaNAs super-lattice solar cell. Acta Physica Sinica, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [19] Chen Xiao-Bo, Yang Guo-Jian, Zhang Chun-Lin, Li Yong-Liang, Liao Hong-Bo, Zhang Yun-Zhi, Chen Luan, Wang Ya-Fei. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application. Acta Physica Sinica, 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  15475
  • PDF Downloads:  466
  • Cited By: 0
Publishing process
  • Received Date:  05 March 2019
  • Accepted Date:  24 March 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019

/

返回文章
返回