-
At present, there are many reports on the preparation of large area CH3NH3PbI3 perovskite solar cells based on ink-jet printing. These researches focus mainly on the ink-jet printing and electrode printing of perovskite active layer films. The hole transport layer, electron transport layer and other modified layers in the cell structure are still completed by spin coating or coating. In this work, we successfully realize large area CH3NH3PbI3 perovskite solar cells based on full ink-jet printing, including pen/Ag NWs bottom electrode, agnws top electrode, PEDOT: PSS hole transport layer, etc. It is found that the full inkjet printing can greatly reduce the material cost and simplify the production process, and obtain PC61BM layer, PEDOT: PSS layer, PEI layer and CH3NH3PbI3 perovskite thin film with high density and good uniformity. On this basis, we prepare the CH3NH3PbI3 perovskite solar cells with areas of 60, 80 and 100 cm2, respectively. The results show that when the concentration of perovskite ink is 1 mol/L, the printing speed is 30 mm/s and the substrate temperature is 50 ℃, the surface of perovskite film is smooth and the grain size is in a range of 500–600 nm. The surface roughness of the film is only 10 nm, so high-quality perovskite film can be obtained. The power conversion efficiency of the perovskite solar cell with an effective area of 60 cm2 is as high as 14.25% (VOC = 1.03 V, JSC = 19.21 mA/cm2, FF = 72%), which is the highest efficiency of perovskite solar cell prepared by full ink-jet printing method reported so far. In addition, when the device is placed in the air for 12 months without packaging, the photoelectric conversion efficiency is reduced to 80% of the initial value. However, the photoelectric conversion efficiency of FTPU package is reduced only by 5%, demonstrating good device stability.
-
Keywords:
- all ink jet printing /
- silver nanowire electrode /
- green anti-solvent extraction and thermal annealing /
- large area preparation /
- flexible perovskite solar cell
[1] Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217Google Scholar
[2] Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar
[3] Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar
[4] Schlisske S, Mathies F, Busko D, Strobel N, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764Google Scholar
[5] Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Paetzold U W 2019 Adv. Energy Mater. 9 1802995Google Scholar
[6] Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar
[7] Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar
[8] Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar
[9] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[10] Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar
[11] Correa-Baena J B, Luo Y Q, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar
[12] Beal R E, Hagström N Z, Barrier J, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar
[13] Mehrabian M, Dalir S, Mahmoudi G, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699
[14] Gao B W, Meng J 2020 Solar Energy 211 1223Google Scholar
[15] Gao B W, Meng J 2020 ACS Appl. Energy Mater. 3 8249Google Scholar
[16] Gao B W, Meng J 2020 Appl. Surf.Sci. 530 147240Google Scholar
[17] Hashmi S G, Tiihonen, Martineau D, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar
[18] Huckaba A J, Lee Y, Xia R, Paek S, Dyson P J, Girault H 2019 Energy Technol. 7 317Google Scholar
[19] Ye T, Han G F, Surendran A, Li J 2019 Solar Energy Materials and Solar Cells 201 110113Google Scholar
[20] Liang C, Zhao D, Li Y, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar
-
图 2 在PEN/AgNWs/PEDOT:PSS上以及30 mm/s和50 ℃条件下不同浓度的钙钛矿薄膜SEM表面形貌图和器件部分截面图 (a), (d) 0.5 mol/L; (b), (e) 1.0 mol/L; (c), (f) 1.5 mol/L
Figure 2. SEM surface morphologies of perovskite thin films with different concentrations on PEN/AgNWs/PEDOT: PSS at 30 mm/s and 50 ℃: (a), (d) 0.5 mol/L; (b), (e) 1.0 mol/L; (c), (f) 1.5 mol/L.
表 1 不同直径和长度的Ag NWs透明电极的方阻和透射率
Table 1. Square resistance and transmittance of Ag NWS transparent electrodes with different diameters and lengths.
印刷速度/
(mm·s–1)直径/nm 长度/μm 透射率/% 方阻/
(Ω·sq–1)10 80 40 90 80 15 60 50 92 60 20 50 60 95 30 30 30 80 90 40 表 2 不同有效面积的钙钛矿电池光伏特性和器件参数
Table 2. Photovoltaic characteristics and device parameters of perovskite cells with different effective areas.
电池有效
面积/cm2串联电阻
/(Ω·cm2)并联电阻
/(Ω·cm2)Voc/V Jsc/(mA·cm–2) FF/% PCE/% 60 80 1600 1.03 19.21 72 14.25 80 100 1000 1.02 16.95 68 11.82 100 120 800 1.01 13.90 66 9.26 -
[1] Liang C, Li P, Gu H, Zhang Y, Li F, Song Y, Shao G, Mathews N, Xing G 2018 Solar RRL 2 1700217Google Scholar
[2] Li P, Liang C, Bao B, Li Y, Hu X, Wang Y, Zhang Y, Li F, Shao G, Song Y 2018 Nano Energy 46 203Google Scholar
[3] Mathies F, Eggers H, Richards B S, Hernandez-Sosa G, Lemmer U, Paetzold U W 2018 ACS Appl. Energy Mater. 1 1834Google Scholar
[4] Schlisske S, Mathies F, Busko D, Strobel N, Lemmer U, Paetzold U W, Hernandez-Sosa G, Klampaftis E 2019 ACS Appl. Energy Mater. 2 764Google Scholar
[5] Abzieher T, Moghadamzadeh S, Schackmar F, Eggers H, Sutterlüti F, Farooq A, Kojda D, Paetzold U W 2019 Adv. Energy Mater. 9 1802995Google Scholar
[6] Sahli F, Werner J, Kamino B A, et al. 2018 Nat. Mater. 17 820Google Scholar
[7] Chen B, Yu Z J, Manzoor S, Wang S, Weigand W, Yu Z H, Yang G, Ni Z Y, Dai X Z, Holman Z C, Huang J S 2020 Joule 4 850Google Scholar
[8] Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R 2019 Adv. Energy Mater. 9 1803241Google Scholar
[9] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[10] Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar
[11] Correa-Baena J B, Luo Y Q, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar
[12] Beal R E, Hagström N Z, Barrier J, McGehee M D, Toney M F, Nogueira A F 2020 Matter 2 207Google Scholar
[13] Mehrabian M, Dalir S, Mahmoudi G, Safin D A 2019 Eur. J. Inorg. Chem. 2019 3699
[14] Gao B W, Meng J 2020 Solar Energy 211 1223Google Scholar
[15] Gao B W, Meng J 2020 ACS Appl. Energy Mater. 3 8249Google Scholar
[16] Gao B W, Meng J 2020 Appl. Surf.Sci. 530 147240Google Scholar
[17] Hashmi S G, Tiihonen, Martineau D, Zakeeruddin S M, Grätzel M 2017 J. Mater. Chem. A 5 4797Google Scholar
[18] Huckaba A J, Lee Y, Xia R, Paek S, Dyson P J, Girault H 2019 Energy Technol. 7 317Google Scholar
[19] Ye T, Han G F, Surendran A, Li J 2019 Solar Energy Materials and Solar Cells 201 110113Google Scholar
[20] Liang C, Zhao D, Li Y, Xing G 2018 Energy Environ. Mater. 1 221Google Scholar
Catalog
Metrics
- Abstract views: 5394
- PDF Downloads: 125
- Cited By: 0