Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance carbon- based CsPbIBr2 perovskite solar cells fabricated by precursor film preparation process

Han Si-Qi Zhang Hai-Ming He Qing-Chen Li Yu-Jie Wang Ru-Feng

Citation:

High-performance carbon- based CsPbIBr2 perovskite solar cells fabricated by precursor film preparation process

Han Si-Qi, Zhang Hai-Ming, He Qing-Chen, Li Yu-Jie, Wang Ru-Feng
PDF
HTML
Get Citation
  • All-inorganic perovskite has attracted extensive attention due to its photovoltaic properties and stability. Typically, the α-phase CsPbI3 has an ideal bandgap of 1.73 eV suitable for the construction of high performance inorganic PSCs. But it suffers phase instability under ambient condition because of the unsatisfactory tolerance factor. By incorporating Br atoms into the perovskite structure, can greatly enhance the phase stability can be greatly enhanced. For example, CsPbBr3 shows an excellent ambient stability and a wide bandgap of 2.3 eV that results in a limited light absorbtion. With the consideration from the unified perspective of the bandgap and the ambient phase stability, CsPbIBr2 has a relatively appropriate bandgap (2.05 eV) and higher stability than CsPbI3 and CsPbI2Br, which is made a good option for stable and efficient PSCs. However, there exist numerous defects on the CsPbIBr2 film prepared by conventional one-step deposition method, which seriously affect the photoelectric conversion efficiency (PCE) of perovskite solar cells (PSCs). Considering the short dripping time and poor reproducibility of conventional anti-solvent technology, a precursor film preparation process is proposed to fabricate efficient and stable carbon-based CsPbIBr2 perovskite solar cells. Using isopropyl alcohol (IPA) as the anti-solvent, the nucleation position of perovskite can be adjusted by regulating the evaporation rate of DMSO in the precursor film. In addition, guanidine thiocyanate (C2H4N4S) is added into IPA solution as a passivator to regulate the nucleation and crystallization process of perovskite. The carboxylic acid group of C2H4N4S can crosslink to Pb2+ of CsPbIBr2 via a chelating interaction, resulting in the easier decomposition of the CsI-DMSO-PbBr2 intermediate phase in the spin-coating process of the precursor film. The amino group of C2H4N4S can also promote the crystallization and suppress the ion migration of the perovskite film through hydrogen bonds. The result shows that the compactness of the optimized CsPbIBr2 film is significantly improved and the average grain size is about 800nm. The crystallinity and grain orientation are improved, and thus achieving better carrier separation and transport efficiency. The highest PCE of carbon-based CsPbIBr2 PSC is obviously improved from 5.29% to 6.71%, i.e. increased by almost 21.16% compared with the control sample. Furthermore, the PSCs with precursor film preparation process possesses better long-term stability. The results obtained in this paper demonstrate that the new preparation technology can improve the quality of inorganic perovskite films in pure DMSO solvent system.
      Corresponding author: Zhang Hai-Ming, zhmtjwl@163.com
    • Funds: Project supported by Natural Science Foundation of Tianjin, China(Grant No. 20JCZDJC00060), the National Natural Science Foundation of China (Grant No. 62073240 ), the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, China(Grant No.2020KJ087), and Tianjin Science and Technology Commissioner Project, China (Grant No. 20YDTPJC0062).
    [1]

    Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar

    [2]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [3]

    https://www.nrel.gov/pv/cell-efficiency.html (8 6 2021).

    [4]

    Bisquert J, Juarez-Perez EJ. 2019 J. Phys. Chem. Lett. 10: 5889.

    [5]

    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Joule 3 191Google Scholar

    [6]

    Mariotti S, Hutter O. S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar

    [7]

    Subhani W S, Wang K, Du M, Liu S F 2019 Nano Energy 61 165Google Scholar

    [8]

    Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T 2019 J. Mater. Chem. A. 7 8690Google Scholar

    [9]

    Zhang Z, He F, Zhu W, Chen D, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2020 Sustain. Energ. Fuels. 4 4506Google Scholar

    [10]

    Yang B, Wang M, Hu X, Zhou T, Zang Z 2019 Nano Energy 57 718Google Scholar

    [11]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 130 3849Google Scholar

    [12]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [13]

    Steele J A, Lai M, Zhang Y, Lin Z, Hofkens J, Roeffaers B J M, Yang P. 2020 Acc. Mater. Res. 1 3Google Scholar

    [14]

    Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, Tang Q 2019 J. Mater. Chem. A. 7 21036Google Scholar

    [15]

    Li Z, Zhou F, Wang Q, Ding L, Jin Z 2020 Nano Energy 71 104634Google Scholar

    [16]

    Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 ACS. Energy. Lett. 5 290

    [17]

    Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng Y, Hagfeldt A, Sun L 2020 J. Energy. Chem. 46 8Google Scholar

    [18]

    Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W. 2019 Sol. RRL. 3 1900135Google Scholar

    [19]

    Yin X, Guo Y, Liu J, Que W, Ma F, Xu K 2020 J Phys. Chem. Lett. 11 7035Google Scholar

    [20]

    Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [21]

    Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y 2020 Nano-Micro Lett. 12 1Google Scholar

    [22]

    Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y 2018 J. Mater. Chem. A. 6 19810.

    [23]

    Han S, Zhang H, Wang R, He Q 2021 Mat Sci. Semicon. Proc. 131 105847Google Scholar

    [24]

    Subhani W S, Wang K, Du M, Wang X, Liu S 2019 Adv. Energy. Mater. 9 1803785Google Scholar

    [25]

    Li N, Zhu Z, Li J, Jen A K Y 2018 Adv. Energy. Mater. 8 1800525Google Scholar

    [26]

    Luo J, Qiu R Z, Yang Z S, Wang Y X, Zhang Q F 2018 RSC. Adv. 8 724Google Scholar

    [27]

    Song S, Hörantner M T, Choi K, Snaith H J, Park T 2017 J. Mater. Chem. A. 5 3812Google Scholar

    [28]

    Wang Y, Wang K, Subhani W S, Zhang C, Jiang X, Wang S, Bao H, Liu L, Wan L, Liu S 2020 Small 16 1907283Google Scholar

    [29]

    Zhu W, Chai W, Deng M, Chen D, Chen D, Zhang J, Zhang C, Hao Y 2020 Electrochim. Acta. 330 135325Google Scholar

    [30]

    Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 2997Google Scholar

    [31]

    Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J 2018 ACS Appl Energy. Mater. 1 4991Google Scholar

    [32]

    Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dail Q, Xu L, Song H 2019 ACS Appl. Mater. Inter. 11 33868Google Scholar

    [33]

    Bian J, Wu Y, Bi W, Liu L, Su X, Zhang B 2020 Energ Fuel. 34 11472Google Scholar

    [34]

    Lu H, Liu Y, Ahlawat P, Mishra A, Tress W, Eickemeyer F, Yang Y, Fu F, Wang Z, Avalos C, Carlsen B, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin S, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M 2020 Science. 370 6512

    [35]

    Abdelsamie M, Li T, Babbe F, Xu J, Han Q, Blum V, M Sutter-Fella C, B Mitzi D, Toney M F 2021 ACS Appl. Mater. Inter. 13 13212Google Scholar

  • 图 1  (a) CsPbIBr2薄膜制备流程图; (b) 钙钛矿太阳能电池器件结构示意图; (c) 钙钛矿太阳能电池SEM截面图

    Figure 1.  (a) Schematic process for the preparation of CsPbIBr2; (b) schematic of architecture; (c) cross-sectional SEM view of the device structure.

    图 2  不同制备工艺下前驱体薄膜表面照片 (a) 传统方法; (b) IPA处理; (c) IPA处理、C2H4N4S钝化(0.4 mg/ml)

    Figure 2.  Optical images of precursor film under different preparation processes: (a) conventional method; (b) adding IPA solution; (c) adding IPA solution with 0.4 mg/ml of C2H4N4S.

    图 3  不同制备工艺下CsPbIBr2薄膜表面SEM图 (a) 传统方法; (b) IPA处理; (c) IPA处理、C2H4N4S钝化(0.4 mg/ml); (d) IPA处理、C2H4N4S钝化(0.8 mg/ml); 对应器件截面SEM图 (e−h)

    Figure 3.  SEM images of CsPbIBr2 film under different preparation processes: (a) Conventional method; (b) adding IPA solution; (c) adding IPA solution with 0.4 mg/ml of C2H4N4S; (d) adding IPA solution with 0.8 mg/ml of C2H4N4S; (e−h) corresponding crosssectional SEM images.

    图 4  不同制备工艺下CsPbIBr2薄膜 (a) XRD谱图; (b) XPS谱图

    Figure 4.  CsPbIBr2 film under different preparation processes: (a) XRD patterns; (b) XPS spectrum.

    图 5  不同制备工艺下CsPbIBr2薄膜 (a) UV-Vis谱图; (b) Tauc plot谱图

    Figure 5.  CsPbIBr2 film under different preparation processes: (a) UV-vis absorbance spectra; (b) Tauc plots.

    图 6  不同制备工艺下CsPbIBr2薄膜 (a) PL谱图; (b) TRPL谱图

    Figure 6.  CsPbIBr2 film under different preparation processes: (a) PL spectra; (b) TRPL spectra.

    图 7  不同制备工艺下器件 (a) J-V曲线; (b) 外量子效率(external quantum efficiency, EQE)和积分电流曲线; (c) 电化学阻抗谱

    Figure 7.  PSCs under different preparation processes: (a) J-V curves; (b) EQE spectra along with integrated current densities; (c) Nyquist plots.

    图 8  不同制备工艺下器件稳定性测试

    Figure 8.  Stability of PSCs under different preparation processes.

    表 1  不同C2H4N4S浓度下钙钛矿电池性能指标

    Table 1.  Photovoltaic Parameters of PSCs based on different concentration of C2H4N4S

    PerovskiteJsc/mA cm–2Voc/VFF/%PCE/%
    Control8.251.1953.525.29
    IPA9.191.2153.775.95
    IPA+0.2 mg/mL C2H4N4S10.321.2150.106.24
    IPA+0.4 mg/mL C2H4N4S10.611.2352.406.71
    IPA+0.6 mg/mL C2H4N4S10.891.1950.126.38
    IPA+0.8 mg/mL C2H4N4S10.301.1949.426.07
    注: FF即填充因子(fill factor); PCE即光电转换效率(photoelectric conversion efficiency).
    DownLoad: CSV
  • [1]

    Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar

    [2]

    Boyd C C, Cheacharoen R, Leijtens T, McGehee M D 2019 Chem. Rev. 119 3418Google Scholar

    [3]

    https://www.nrel.gov/pv/cell-efficiency.html (8 6 2021).

    [4]

    Bisquert J, Juarez-Perez EJ. 2019 J. Phys. Chem. Lett. 10: 5889.

    [5]

    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y 2019 Joule 3 191Google Scholar

    [6]

    Mariotti S, Hutter O. S, Phillips L J, Yates P J, Kundu B, Durose K 2018 ACS Appl. Mater. Inter. 10 3750Google Scholar

    [7]

    Subhani W S, Wang K, Du M, Liu S F 2019 Nano Energy 61 165Google Scholar

    [8]

    Meng F, Liu A, Gao L, Cao J, Yan Y, Wang N, Fan M, Wei G, Ma T 2019 J. Mater. Chem. A. 7 8690Google Scholar

    [9]

    Zhang Z, He F, Zhu W, Chen D, Chai W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2020 Sustain. Energ. Fuels. 4 4506Google Scholar

    [10]

    Yang B, Wang M, Hu X, Zhou T, Zang Z 2019 Nano Energy 57 718Google Scholar

    [11]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 130 3849Google Scholar

    [12]

    Ouedraogo N A N, Chen Y, Xiao Y Y, Meng Q, Han C B, Yan H, Zhang Y 2020 Nano Energy 67 104249Google Scholar

    [13]

    Steele J A, Lai M, Zhang Y, Lin Z, Hofkens J, Roeffaers B J M, Yang P. 2020 Acc. Mater. Res. 1 3Google Scholar

    [14]

    Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, Tang Q 2019 J. Mater. Chem. A. 7 21036Google Scholar

    [15]

    Li Z, Zhou F, Wang Q, Ding L, Jin Z 2020 Nano Energy 71 104634Google Scholar

    [16]

    Faheem M B, Khan B, Feng C, Farooq M U, Raziq F, Xiao Y, Li Y 2019 ACS. Energy. Lett. 5 290

    [17]

    Wan X, Yu Z, Tian W, Huang F, Jin S, Yang X, Cheng Y, Hagfeldt A, Sun L 2020 J. Energy. Chem. 46 8Google Scholar

    [18]

    Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W. 2019 Sol. RRL. 3 1900135Google Scholar

    [19]

    Yin X, Guo Y, Liu J, Que W, Ma F, Xu K 2020 J Phys. Chem. Lett. 11 7035Google Scholar

    [20]

    Ma Q, Huang S, Wen X, Green M A, Ho-Baillie A W Y 2016 Adv. Energy Mater. 6 1502202Google Scholar

    [21]

    Zhu W, Zhang Z, Chen D, Chai W, Chen D, Zhang J, Zhang C, Hao Y 2020 Nano-Micro Lett. 12 1Google Scholar

    [22]

    Yu B, Zhang H, Wu J, Li Y, Li H, Li Y, Shi J, Wu H, Li D, Luo Y 2018 J. Mater. Chem. A. 6 19810.

    [23]

    Han S, Zhang H, Wang R, He Q 2021 Mat Sci. Semicon. Proc. 131 105847Google Scholar

    [24]

    Subhani W S, Wang K, Du M, Wang X, Liu S 2019 Adv. Energy. Mater. 9 1803785Google Scholar

    [25]

    Li N, Zhu Z, Li J, Jen A K Y 2018 Adv. Energy. Mater. 8 1800525Google Scholar

    [26]

    Luo J, Qiu R Z, Yang Z S, Wang Y X, Zhang Q F 2018 RSC. Adv. 8 724Google Scholar

    [27]

    Song S, Hörantner M T, Choi K, Snaith H J, Park T 2017 J. Mater. Chem. A. 5 3812Google Scholar

    [28]

    Wang Y, Wang K, Subhani W S, Zhang C, Jiang X, Wang S, Bao H, Liu L, Wan L, Liu S 2020 Small 16 1907283Google Scholar

    [29]

    Zhu W, Chai W, Deng M, Chen D, Chen D, Zhang J, Zhang C, Hao Y 2020 Electrochim. Acta. 330 135325Google Scholar

    [30]

    Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 2997Google Scholar

    [31]

    Zhu W, Zhang Q, Zhang C, Zhang Z, Chen D, Lin Z, Chang J 2018 ACS Appl Energy. Mater. 1 4991Google Scholar

    [32]

    Zhang B, Bi W, Wu Y, Chen C, Li H, Song Z, Dail Q, Xu L, Song H 2019 ACS Appl. Mater. Inter. 11 33868Google Scholar

    [33]

    Bian J, Wu Y, Bi W, Liu L, Su X, Zhang B 2020 Energ Fuel. 34 11472Google Scholar

    [34]

    Lu H, Liu Y, Ahlawat P, Mishra A, Tress W, Eickemeyer F, Yang Y, Fu F, Wang Z, Avalos C, Carlsen B, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin S, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M 2020 Science. 370 6512

    [35]

    Abdelsamie M, Li T, Babbe F, Xu J, Han Q, Blum V, M Sutter-Fella C, B Mitzi D, Toney M F 2021 ACS Appl. Mater. Inter. 13 13212Google Scholar

  • [1] Wang Ji-wei, Tian Han-min, Wang Yue-rong, Cao Rui, Xu Wu. Theoretical Analysis and Performance Optimization of Cs2AgBiI6 Solar Cells with Dual Hole Transport Layers. Acta Physica Sinica, 2025, 74(3): . doi: 10.7498/aps.74.20241361
    [2] Wang Yue-Rong, Tian Han-Min, Zhang Deng-Qi, Liu Wei-Long, Ma Xu-Lei. Optimal design of Cs2AgBi0.75Sb0.25Br6 perovskite solar cells. Acta Physica Sinica, 2024, 73(2): 028802. doi: 10.7498/aps.73.20231299
    [3] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [4] Luo Yuan, Zhu Cong-Tan, Ma Shu-Peng, Zhu Liu, Guo Xue-Yi, Yang Ying. Low-temperature preparation of SnO2 electron transport layer for perovskite solar cells. Acta Physica Sinica, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [5] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] Wang Gui-Qiang, Bi Jia-Yu, Liu Jie-Qiong, Lei Miao, Zhang Wei. Enhancing quality of CsPbIBr2 inorganic perovskite via cellulose acetate addition for high-performance perovskite solar cells. Acta Physica Sinica, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [8] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He. Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [9] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [10] Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate. Acta Physica Sinica, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [11] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [12] Liu Yi, Xu Zheng, Zhao Su-Ling, Qiao Bo, Li Yang, Qin Zi-Lun, Zhu You-Qin. Influence of phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer treated by two additives on perovskite solar cell performance. Acta Physica Sinica, 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [13] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [14] Wang Peng, Guo Run-Da, Chen Yu, Yue Shou-Zhen, Zhao Yi, Liu Shi-Yong. Influence of gradient doping on photoelectric conversion efficiency of organic photovoltaic devices. Acta Physica Sinica, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [15] Li Guo-Long, Li Jin, Zhen Hong-Yu. Analysis of the light absorption enhancement in polymer solar cell with TiO2 optical spacer. Acta Physica Sinica, 2012, 61(20): 207203. doi: 10.7498/aps.61.207203
    [16] Pan Hui-Ping, Bo Lian-Kun, Huang Tai-Wu, Zhang Yi, Yu Tao, Yao Shu-De. Structural analysis of Cu(In1-xGax)Se2 multi-layer thin film solar cells. Acta Physica Sinica, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [17] Hao Zhi-Hong, Hu Zi-Yang, Zhang Jian-Jun, Hao Qiu-Yan, Zhao Ying. Influence of doped PEDOT ∶PSS on performance of polymer solar cells. Acta Physica Sinica, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Xing Hong-Wei, Peng Ying-Quan, Yang Qing-Sen, Ma Chao-Zhu, Wang Run-Sheng, Li Xun-Shuan. Simulation of polymer-fullerene bulk heterojunction solar cell. Acta Physica Sinica, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  6473
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2021
  • Accepted Date:  05 July 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回