-
Solution method is an important means of fabricating optoelectronic devices. During the thin film sample preparation, organic or inorganic perovskite semiconductor material usually needs to be finished in a glove box. However, most of the traditional experimental characterizations under the air environment, it is hard to reflect the reality of the structure and performance between film and device, therefore it is urgently needed to solve the microstructure evolutions of these semiconductor films based on in situ real-time representation technique. In this work, we report a synchrotron-based grazing incidence wide and small-angle scattering (GIWAXS and GISAXS) in situ real-time observation technique combined with a mini glove box, thereby realizing the standard glove box environment (H2O, O2 content all reached below 1×10–6) under remote control film spin coating or slot-die preparation and various sample post-processing. Meanwhile, this technique can real-time monitor the microstructure and morphology evolution of semiconductor film during fabrication. Based on the in situ device and GIWAXS, SnO2 ETL interface induced perovskite growth crystallization process shows that CQDs additive can result in three-dimensional perovskite, with the random orientation growth changing into highly ordered vertical orientation, meanwhile can effectively restrain the low-dimensional perovskite domain formation, helping to reveal the film microstructure transformation of inner driving force and providing the perovskite device preparation process optimized with experimental and theoretical basis. The conversion efficiency of large-area fully flexible three-dimensional perovskite thin film solar cells prepared by the roll-to-roll total solution slit coating method is increased to 5.23% (the area of a single device is ~15 cm2). Therefore, using the in situ synchrotron-based glove box device, the microstructure evolution and the associated device preparation conditions of perovskite and organic semiconductor thin films can be controlled, and the thin film growth interface characteristics and film quality can be further controlled, which is the key technology to control the optimization process conditions of semiconductor thin films and devices.
-
Keywords:
- grazing incidence wide-angle angle scattering /
- glove box enviromental /
- perovskite film /
- soft lattice /
- microstructure evolution
[1] Ajay K J, Ashish K, Tsutomu M 2019 Chem. Rev. 119 3036Google Scholar
[2] https://www.nrel.gov/pv/cell-efficiency.html [2023-11-22]
[3] Han T H, Tan S, Xue J J, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar
[4] Luo D Y, Su R, Zhang W, Gong Q H, Zhu R 2020 Nat. Rev. Mater. 5 44
[5] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[6] Zhang H, Wang H, Williams S, Xiong D H, Zhang W J, Chueh C C, Chen W, Alex K J 2017 Adv. Mater. 29 1606608Google Scholar
[7] Yang Y, Feng S L, Xu W D, Li M, Li L, Zhang X M, Ji G W, Zhang X N, Wang Z K, Xiong Y M, Cao L, Sun B Q, Gao X Y 2017 ACS Appl. Mater. interfaces 9 23141Google Scholar
[8] Li F C, Yuan J Y, Ling X, Zhang Y, Yang Y G, Cheun S H, Carr H, Gao X F, Ma W L 2018 Adv. Funct. Mater. 28 1706377Google Scholar
[9] Li H, Zuo C T, Angmo D, Weerasinghe H, Gao M, Yang J L 2022 Nano-Micro Lett. 14 79Google Scholar
[10] Tan H, Jain A, Voznyy O, Lan X, Arquer F P, Fan J, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar
[11] Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar
[12] Wang Z K, Gong X, Li M, Hu Y, Wang J M, Ma H, Liao L S 2016 ACS Nano 10 5479Google Scholar
[13] Feng S L, Yang Y G, Li M, Wang J M, Cheng Z, Li J, Ji G W, Yin G Z, Song F, Wang Z K, Li J, Gao X Y 2016 ACS appl. Mater. Interfaces 8 14503Google Scholar
[14] Wang Y, Zhang T Y, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar
[15] Yang Y G, Feng S L, Li M, Li F C, Zhang C C, Han Y J, Li L, Yuan J, Cao L, Wang Z K, Sun B Q, Gao X Y 2018 Nano Energy 48 10Google Scholar
[16] Yang Y, Yang M J, David T M, Yan Y, Miller E M, Zhu K, Beard M C 2017 Nat. Energy 2 16207Google Scholar
[17] Yang Y G, Feng S L, Li M, Xu W D, Yin G Z, Wang Z K, Sun B Q, Gao X Y 2017 Sci. Rep. 7 46724Google Scholar
[18] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar
Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar
[19] Kuai L, Li J N, Li Y, Wang Y S, Li P D, Qin Y S, Song T, Yang Y G, Chen Z Y, Gao X Y, Sun B Q 2020 ACS Energy Lett. 5 8Google Scholar
[20] Wang Y, Dar M I, Luis K O, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Michael G, Zhao Y X 2019 Science 365 591Google Scholar
[21] Yang Y G, Lu H Z , Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Shaik M Z, Liu Y H, Michael G, Anders H 2021 Energy Environ. Sci. 6 3447Google Scholar
[22] Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y 2019 J. Am. Chem. Soc. 141 13948Google Scholar
[23] Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Michael G, Liu F, Thomas P R, Zhu R, Gong Q H 2017 Nat. Commun. 8 15688
[24] Qin M C, Tse K, Lau T, Li Y, Su C, Yang G, Chen J, Zhu J, Jeng U S, Li G, Chen H Z, Lu X H 2019 Adv. Mater. 31 1901284Google Scholar
[25] Yang Y G, Yang L, Feng S L 2020 Mater. Today Adv. 6 100068Google Scholar
[26] Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Silver H T C, Feng S L, Michael S, Wang Z K, Antonio A 2020 ACS Energy Lett. 5 1923Google Scholar
[27] Chan J H, Feng E M, Li H Y, Ding Y, Long C Y, Gao Y J, Yang Y G, Yi C Y, Zheng Z J, Yang J L 2023 Nano-Micro Lett. 15 164Google Scholar
[28] McMeekin D P, Holzhey P, O Fürer S, Steven P H, Laura T S, James M B, Suhas M, Seongrok S, Nicholas H, Lu J, Michael B J, Joseph J, Udo B, Henry J S 2023 Nat. Mater. 22 73Google Scholar
[29] Ye C Z, Yang J, Yao L X, Chen N Y 2001 Chin. Sci. Bull. 46 1951Google Scholar
[30] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪 2022 物理学报 71 166801Google Scholar
Wang C L, Zhang Z L, Zhu Y F, Zhao X F, Song H W, Chen C 2022 Acta. Phys. Sin. 71 166801Google Scholar
[31] Yan Y J, Yang Y G, Liang M L, Mohamed A, Tõnu P, Zheng K B, Liang Z Q 2021 Nat. Commun. 12 6603Google Scholar
[32] Yu S, Meng J, Pan Q Y, Zhao Q, Tönu P, Yang Y G, Zheng K B, Liang Z Q 2022 Energy Environ. Sci. 15 3321Google Scholar
[33] Yang Y G, Yang L, Feng S L, Niu Y C, Li X X, Cheng L W, Li L, Qin W, Wang T, Xu Q, Dong H, Lu H Z, Qin T S, Huang W 2023 Adv. Energy Mater. 13 2300661Google Scholar
[34] Li Q, Zheng Y C, Yang S, Hou Y 2023 Chin. Sci. Bull. 68 3Google Scholar
-
图 1 基于定制小型标准手套箱(c (H2O, O2) ~ 1×10–6)的同步辐射原位涂布成膜观测装置 (a) 原位装置布局; (b) 手套箱效果图; (c) 原位装置实物图; (d) 实时涂布
Figure 1. A custom small standard glove box (c (H2O, O2< 1×10–6) of synchrotron radiation in situ slot-die film-forming observation device: (a) Schematic of in situ device; (b) glove box; (c) automatic drip system and the photo picture of in situ device object; (d) the photo picture of drip system.
图 2 (a) 原位涂布和同步辐射观测示意图; (b)—(e) 沉积在SnO2电子传输层上的3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GIWAXS图; (f)—(i) 沉积在CQDs-SnO2 电子传输层上3D钙钛矿旋涂60 s过程中0, 10, 30, 60 s四个时间点的原位GIWAXS图
Figure 2. (a) In situ slot-die coating synchrotron radiation observation. (b)–(e) In situ GIWAXS patterns of 3D perovskite thin films deposited on SnO2 electron transport layer (ETL) during the slot-die coating process from 0 to 60 s: (b) 0 s; (c) 10 s; (d) 30 s; (e) 60 s. (f)–(i) In situ GIWAXS patterns of 3D perovskite thin films deposited on CQDs-SnO2 ETL during the slot-die coating process from 0 to 60 s: (f) 0 s; (g) 10 s; (h) 30 s; (i) 60 s.
图 3 (a)—(d) 沉积在SnO2 电子传输层上的3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GISAXS图; (e)—(h) 沉积在CQDs-SnO2 电子传输层上3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GISAXS图; (i)—(k) 钙钛矿涂布60 s过程中0, 30, 60 s三个时间点的GISAXS一维积分数据
Figure 3. (a)–(d) In situ GISAXS patterns of 3D perovskite thin films deposited on SnO2 ETL during the slot-die coating process from 0 to 60 s: (a) 0 s; (b) 10 s; (c) 30 s; (d) 60 s. (e)–(h) In situ GISAXS patterns of 3D perovskite thin films deposited on CQDs-SnO2 ETL during the slot-die coating process from 0 to 60 s: (e) 0 s; (f) 10 s; (g) 30 s; (h) 60 s. (i)–(k) 1D integrated GISAXS of 3D perovskite (Per) thin films deposited on CQDs-SnO2 ETL during the slot-die coating process: (i) 0 s; (j) 30 s; (k) 60 s.
图 4 基于卷对卷全溶液狭缝涂布方法制备的全柔性钙钛矿太阳能电池(器件结构为PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au) (a) SnO2 电子传输层上制备的器件; (b) CQDs-SnO2 电子传输层上制备的器件, 单个器件有效面积为~15 cm2; (c)大面积全柔性3D钙钛矿太阳能电池
Figure 4. Fully roll-to-roll (R2R) slot-die printed flexible perovskite solar cells with device structure of PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au: (a) Prepared on the SnO2 electron transport layer and (b) prepared on CQDs-SnO2 electron transport layer, with an effective area of ~15 cm2 per unit cell; (c) the printed flexible perovskite solar cells with device structure of PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au.
-
[1] Ajay K J, Ashish K, Tsutomu M 2019 Chem. Rev. 119 3036Google Scholar
[2] https://www.nrel.gov/pv/cell-efficiency.html [2023-11-22]
[3] Han T H, Tan S, Xue J J, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar
[4] Luo D Y, Su R, Zhang W, Gong Q H, Zhu R 2020 Nat. Rev. Mater. 5 44
[5] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[6] Zhang H, Wang H, Williams S, Xiong D H, Zhang W J, Chueh C C, Chen W, Alex K J 2017 Adv. Mater. 29 1606608Google Scholar
[7] Yang Y, Feng S L, Xu W D, Li M, Li L, Zhang X M, Ji G W, Zhang X N, Wang Z K, Xiong Y M, Cao L, Sun B Q, Gao X Y 2017 ACS Appl. Mater. interfaces 9 23141Google Scholar
[8] Li F C, Yuan J Y, Ling X, Zhang Y, Yang Y G, Cheun S H, Carr H, Gao X F, Ma W L 2018 Adv. Funct. Mater. 28 1706377Google Scholar
[9] Li H, Zuo C T, Angmo D, Weerasinghe H, Gao M, Yang J L 2022 Nano-Micro Lett. 14 79Google Scholar
[10] Tan H, Jain A, Voznyy O, Lan X, Arquer F P, Fan J, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar
[11] Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar
[12] Wang Z K, Gong X, Li M, Hu Y, Wang J M, Ma H, Liao L S 2016 ACS Nano 10 5479Google Scholar
[13] Feng S L, Yang Y G, Li M, Wang J M, Cheng Z, Li J, Ji G W, Yin G Z, Song F, Wang Z K, Li J, Gao X Y 2016 ACS appl. Mater. Interfaces 8 14503Google Scholar
[14] Wang Y, Zhang T Y, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar
[15] Yang Y G, Feng S L, Li M, Li F C, Zhang C C, Han Y J, Li L, Yuan J, Cao L, Wang Z K, Sun B Q, Gao X Y 2018 Nano Energy 48 10Google Scholar
[16] Yang Y, Yang M J, David T M, Yan Y, Miller E M, Zhu K, Beard M C 2017 Nat. Energy 2 16207Google Scholar
[17] Yang Y G, Feng S L, Li M, Xu W D, Yin G Z, Wang Z K, Sun B Q, Gao X Y 2017 Sci. Rep. 7 46724Google Scholar
[18] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar
Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar
[19] Kuai L, Li J N, Li Y, Wang Y S, Li P D, Qin Y S, Song T, Yang Y G, Chen Z Y, Gao X Y, Sun B Q 2020 ACS Energy Lett. 5 8Google Scholar
[20] Wang Y, Dar M I, Luis K O, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Michael G, Zhao Y X 2019 Science 365 591Google Scholar
[21] Yang Y G, Lu H Z , Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Shaik M Z, Liu Y H, Michael G, Anders H 2021 Energy Environ. Sci. 6 3447Google Scholar
[22] Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y 2019 J. Am. Chem. Soc. 141 13948Google Scholar
[23] Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Michael G, Liu F, Thomas P R, Zhu R, Gong Q H 2017 Nat. Commun. 8 15688
[24] Qin M C, Tse K, Lau T, Li Y, Su C, Yang G, Chen J, Zhu J, Jeng U S, Li G, Chen H Z, Lu X H 2019 Adv. Mater. 31 1901284Google Scholar
[25] Yang Y G, Yang L, Feng S L 2020 Mater. Today Adv. 6 100068Google Scholar
[26] Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Silver H T C, Feng S L, Michael S, Wang Z K, Antonio A 2020 ACS Energy Lett. 5 1923Google Scholar
[27] Chan J H, Feng E M, Li H Y, Ding Y, Long C Y, Gao Y J, Yang Y G, Yi C Y, Zheng Z J, Yang J L 2023 Nano-Micro Lett. 15 164Google Scholar
[28] McMeekin D P, Holzhey P, O Fürer S, Steven P H, Laura T S, James M B, Suhas M, Seongrok S, Nicholas H, Lu J, Michael B J, Joseph J, Udo B, Henry J S 2023 Nat. Mater. 22 73Google Scholar
[29] Ye C Z, Yang J, Yao L X, Chen N Y 2001 Chin. Sci. Bull. 46 1951Google Scholar
[30] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪 2022 物理学报 71 166801Google Scholar
Wang C L, Zhang Z L, Zhu Y F, Zhao X F, Song H W, Chen C 2022 Acta. Phys. Sin. 71 166801Google Scholar
[31] Yan Y J, Yang Y G, Liang M L, Mohamed A, Tõnu P, Zheng K B, Liang Z Q 2021 Nat. Commun. 12 6603Google Scholar
[32] Yu S, Meng J, Pan Q Y, Zhao Q, Tönu P, Yang Y G, Zheng K B, Liang Z Q 2022 Energy Environ. Sci. 15 3321Google Scholar
[33] Yang Y G, Yang L, Feng S L, Niu Y C, Li X X, Cheng L W, Li L, Qin W, Wang T, Xu Q, Dong H, Lu H Z, Qin T S, Huang W 2023 Adv. Energy Mater. 13 2300661Google Scholar
[34] Li Q, Zheng Y C, Yang S, Hou Y 2023 Chin. Sci. Bull. 68 3Google Scholar
Catalog
Metrics
- Abstract views: 2355
- PDF Downloads: 90
- Cited By: 0