Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Solution slot-die coating perovskite film crystalline growth observed by in situ GIWAXS/GISAXS

Yang Ying-Guo Feng Shang-Lei Li Li-Na

Citation:

Solution slot-die coating perovskite film crystalline growth observed by in situ GIWAXS/GISAXS

Yang Ying-Guo, Feng Shang-Lei, Li Li-Na
PDF
HTML
Get Citation
  • Solution method is an important means of fabricating optoelectronic devices. During the thin film sample preparation, organic or inorganic perovskite semiconductor material usually needs to be finished in a glove box. However, most of the traditional experimental characterizations under the air environment, it is hard to reflect the reality of the structure and performance between film and device, therefore it is urgently needed to solve the microstructure evolutions of these semiconductor films based on in situ real-time representation technique. In this work, we report a synchrotron-based grazing incidence wide and small-angle scattering (GIWAXS and GISAXS) in situ real-time observation technique combined with a mini glove box, thereby realizing the standard glove box environment (H2O, O2 content all reached below 1×10–6) under remote control film spin coating or slot-die preparation and various sample post-processing. Meanwhile, this technique can real-time monitor the microstructure and morphology evolution of semiconductor film during fabrication. Based on the in situ device and GIWAXS, SnO2 ETL interface induced perovskite growth crystallization process shows that CQDs additive can result in three-dimensional perovskite, with the random orientation growth changing into highly ordered vertical orientation, meanwhile can effectively restrain the low-dimensional perovskite domain formation, helping to reveal the film microstructure transformation of inner driving force and providing the perovskite device preparation process optimized with experimental and theoretical basis. The conversion efficiency of large-area fully flexible three-dimensional perovskite thin film solar cells prepared by the roll-to-roll total solution slit coating method is increased to 5.23% (the area of a single device is ~15 cm2). Therefore, using the in situ synchrotron-based glove box device, the microstructure evolution and the associated device preparation conditions of perovskite and organic semiconductor thin films can be controlled, and the thin film growth interface characteristics and film quality can be further controlled, which is the key technology to control the optimization process conditions of semiconductor thin films and devices.
      Corresponding author: Yang Ying-Guo, yangyingguo@fudan.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403400), the National Natural Science Foundation of China (Grant Nos. 12175298, 12075309), the Talents Staring Foundation of Fudan University, China, and the Shanghai Municipal Commission for Science and Technology, China (Grant No. 20ZR1464100).
    [1]

    Ajay K J, Ashish K, Tsutomu M 2019 Chem. Rev. 119 3036Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2023-11-22]

    [3]

    Han T H, Tan S, Xue J J, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar

    [4]

    Luo D Y, Su R, Zhang W, Gong Q H, Zhu R 2020 Nat. Rev. Mater. 5 44

    [5]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [6]

    Zhang H, Wang H, Williams S, Xiong D H, Zhang W J, Chueh C C, Chen W, Alex K J 2017 Adv. Mater. 29 1606608Google Scholar

    [7]

    Yang Y, Feng S L, Xu W D, Li M, Li L, Zhang X M, Ji G W, Zhang X N, Wang Z K, Xiong Y M, Cao L, Sun B Q, Gao X Y 2017 ACS Appl. Mater. interfaces 9 23141Google Scholar

    [8]

    Li F C, Yuan J Y, Ling X, Zhang Y, Yang Y G, Cheun S H, Carr H, Gao X F, Ma W L 2018 Adv. Funct. Mater. 28 1706377Google Scholar

    [9]

    Li H, Zuo C T, Angmo D, Weerasinghe H, Gao M, Yang J L 2022 Nano-Micro Lett. 14 79Google Scholar

    [10]

    Tan H, Jain A, Voznyy O, Lan X, Arquer F P, Fan J, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [11]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [12]

    Wang Z K, Gong X, Li M, Hu Y, Wang J M, Ma H, Liao L S 2016 ACS Nano 10 5479Google Scholar

    [13]

    Feng S L, Yang Y G, Li M, Wang J M, Cheng Z, Li J, Ji G W, Yin G Z, Song F, Wang Z K, Li J, Gao X Y 2016 ACS appl. Mater. Interfaces 8 14503Google Scholar

    [14]

    Wang Y, Zhang T Y, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [15]

    Yang Y G, Feng S L, Li M, Li F C, Zhang C C, Han Y J, Li L, Yuan J, Cao L, Wang Z K, Sun B Q, Gao X Y 2018 Nano Energy 48 10Google Scholar

    [16]

    Yang Y, Yang M J, David T M, Yan Y, Miller E M, Zhu K, Beard M C 2017 Nat. Energy 2 16207Google Scholar

    [17]

    Yang Y G, Feng S L, Li M, Xu W D, Yin G Z, Wang Z K, Sun B Q, Gao X Y 2017 Sci. Rep. 7 46724Google Scholar

    [18]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [19]

    Kuai L, Li J N, Li Y, Wang Y S, Li P D, Qin Y S, Song T, Yang Y G, Chen Z Y, Gao X Y, Sun B Q 2020 ACS Energy Lett. 5 8Google Scholar

    [20]

    Wang Y, Dar M I, Luis K O, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Michael G, Zhao Y X 2019 Science 365 591Google Scholar

    [21]

    Yang Y G, Lu H Z , Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Shaik M Z, Liu Y H, Michael G, Anders H 2021 Energy Environ. Sci. 6 3447Google Scholar

    [22]

    Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y 2019 J. Am. Chem. Soc. 141 13948Google Scholar

    [23]

    Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Michael G, Liu F, Thomas P R, Zhu R, Gong Q H 2017 Nat. Commun. 8 15688

    [24]

    Qin M C, Tse K, Lau T, Li Y, Su C, Yang G, Chen J, Zhu J, Jeng U S, Li G, Chen H Z, Lu X H 2019 Adv. Mater. 31 1901284Google Scholar

    [25]

    Yang Y G, Yang L, Feng S L 2020 Mater. Today Adv. 6 100068Google Scholar

    [26]

    Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Silver H T C, Feng S L, Michael S, Wang Z K, Antonio A 2020 ACS Energy Lett. 5 1923Google Scholar

    [27]

    Chan J H, Feng E M, Li H Y, Ding Y, Long C Y, Gao Y J, Yang Y G, Yi C Y, Zheng Z J, Yang J L 2023 Nano-Micro Lett. 15 164Google Scholar

    [28]

    McMeekin D P, Holzhey P, O Fürer S, Steven P H, Laura T S, James M B, Suhas M, Seongrok S, Nicholas H, Lu J, Michael B J, Joseph J, Udo B, Henry J S 2023 Nat. Mater. 22 73Google Scholar

    [29]

    Ye C Z, Yang J, Yao L X, Chen N Y 2001 Chin. Sci. Bull. 46 1951Google Scholar

    [30]

    王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪 2022 物理学报 71 166801Google Scholar

    Wang C L, Zhang Z L, Zhu Y F, Zhao X F, Song H W, Chen C 2022 Acta. Phys. Sin. 71 166801Google Scholar

    [31]

    Yan Y J, Yang Y G, Liang M L, Mohamed A, Tõnu P, Zheng K B, Liang Z Q 2021 Nat. Commun. 12 6603Google Scholar

    [32]

    Yu S, Meng J, Pan Q Y, Zhao Q, Tönu P, Yang Y G, Zheng K B, Liang Z Q 2022 Energy Environ. Sci. 15 3321Google Scholar

    [33]

    Yang Y G, Yang L, Feng S L, Niu Y C, Li X X, Cheng L W, Li L, Qin W, Wang T, Xu Q, Dong H, Lu H Z, Qin T S, Huang W 2023 Adv. Energy Mater. 13 2300661Google Scholar

    [34]

    Li Q, Zheng Y C, Yang S, Hou Y 2023 Chin. Sci. Bull. 68 3Google Scholar

  • 图 1  基于定制小型标准手套箱(c (H2O, O2) ~ 1×10–6)的同步辐射原位涂布成膜观测装置 (a) 原位装置布局; (b) 手套箱效果图; (c) 原位装置实物图; (d) 实时涂布

    Figure 1.  A custom small standard glove box (c (H2O, O2< 1×10–6) of synchrotron radiation in situ slot-die film-forming observation device: (a) Schematic of in situ device; (b) glove box; (c) automatic drip system and the photo picture of in situ device object; (d) the photo picture of drip system.

    图 2  (a) 原位涂布和同步辐射观测示意图; (b)—(e) 沉积在SnO2电子传输层上的3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GIWAXS图; (f)—(i) 沉积在CQDs-SnO2 电子传输层上3D钙钛矿旋涂60 s过程中0, 10, 30, 60 s四个时间点的原位GIWAXS图

    Figure 2.  (a) In situ slot-die coating synchrotron radiation observation. (b)–(e) In situ GIWAXS patterns of 3D perovskite thin films deposited on SnO2 electron transport layer (ETL) during the slot-die coating process from 0 to 60 s: (b) 0 s; (c) 10 s; (d) 30 s; (e) 60 s. (f)–(i) In situ GIWAXS patterns of 3D perovskite thin films deposited on CQDs-SnO2 ETL during the slot-die coating process from 0 to 60 s: (f) 0 s; (g) 10 s; (h) 30 s; (i) 60 s.

    图 3  (a)—(d) 沉积在SnO2 电子传输层上的3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GISAXS图; (e)—(h) 沉积在CQDs-SnO2 电子传输层上3D钙钛矿涂布60 s过程中0, 10, 30, 60 s四个时间点的原位GISAXS图; (i)—(k) 钙钛矿涂布60 s过程中0, 30, 60 s三个时间点的GISAXS一维积分数据

    Figure 3.  (a)–(d) In situ GISAXS patterns of 3D perovskite thin films deposited on SnO2 ETL during the slot-die coating process from 0 to 60 s: (a) 0 s; (b) 10 s; (c) 30 s; (d) 60 s. (e)–(h) In situ GISAXS patterns of 3D perovskite thin films deposited on CQDs-SnO2 ETL during the slot-die coating process from 0 to 60 s: (e) 0 s; (f) 10 s; (g) 30 s; (h) 60 s. (i)–(k) 1D integrated GISAXS of 3D perovskite (Per) thin films deposited on CQDs-SnO2 ETL during the slot-die coating process: (i) 0 s; (j) 30 s; (k) 60 s.

    图 4  基于卷对卷全溶液狭缝涂布方法制备的全柔性钙钛矿太阳能电池(器件结构为PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au) (a) SnO2 电子传输层上制备的器件; (b) CQDs-SnO2 电子传输层上制备的器件, 单个器件有效面积为~15 cm2; (c)大面积全柔性3D钙钛矿太阳能电池

    Figure 4.  Fully roll-to-roll (R2R) slot-die printed flexible perovskite solar cells with device structure of PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au: (a) Prepared on the SnO2 electron transport layer and (b) prepared on CQDs-SnO2 electron transport layer, with an effective area of ~15 cm2 per unit cell; (c) the printed flexible perovskite solar cells with device structure of PET/ITO/SnO2 ETL/3D perovskite (2MOE)/Spiro/Au.

  • [1]

    Ajay K J, Ashish K, Tsutomu M 2019 Chem. Rev. 119 3036Google Scholar

    [2]

    https://www.nrel.gov/pv/cell-efficiency.html [2023-11-22]

    [3]

    Han T H, Tan S, Xue J J, Meng L, Lee J W, Yang Y 2019 Adv. Mater. 31 1803515Google Scholar

    [4]

    Luo D Y, Su R, Zhang W, Gong Q H, Zhu R 2020 Nat. Rev. Mater. 5 44

    [5]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [6]

    Zhang H, Wang H, Williams S, Xiong D H, Zhang W J, Chueh C C, Chen W, Alex K J 2017 Adv. Mater. 29 1606608Google Scholar

    [7]

    Yang Y, Feng S L, Xu W D, Li M, Li L, Zhang X M, Ji G W, Zhang X N, Wang Z K, Xiong Y M, Cao L, Sun B Q, Gao X Y 2017 ACS Appl. Mater. interfaces 9 23141Google Scholar

    [8]

    Li F C, Yuan J Y, Ling X, Zhang Y, Yang Y G, Cheun S H, Carr H, Gao X F, Ma W L 2018 Adv. Funct. Mater. 28 1706377Google Scholar

    [9]

    Li H, Zuo C T, Angmo D, Weerasinghe H, Gao M, Yang J L 2022 Nano-Micro Lett. 14 79Google Scholar

    [10]

    Tan H, Jain A, Voznyy O, Lan X, Arquer F P, Fan J, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H 2017 Science 355 722Google Scholar

    [11]

    Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W 2020 Adv. Mater. 32 1906374Google Scholar

    [12]

    Wang Z K, Gong X, Li M, Hu Y, Wang J M, Ma H, Liao L S 2016 ACS Nano 10 5479Google Scholar

    [13]

    Feng S L, Yang Y G, Li M, Wang J M, Cheng Z, Li J, Ji G W, Yin G Z, Song F, Wang Z K, Li J, Gao X Y 2016 ACS appl. Mater. Interfaces 8 14503Google Scholar

    [14]

    Wang Y, Zhang T Y, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [15]

    Yang Y G, Feng S L, Li M, Li F C, Zhang C C, Han Y J, Li L, Yuan J, Cao L, Wang Z K, Sun B Q, Gao X Y 2018 Nano Energy 48 10Google Scholar

    [16]

    Yang Y, Yang M J, David T M, Yan Y, Miller E M, Zhu K, Beard M C 2017 Nat. Energy 2 16207Google Scholar

    [17]

    Yang Y G, Feng S L, Li M, Xu W D, Yin G Z, Wang Z K, Sun B Q, Gao X Y 2017 Sci. Rep. 7 46724Google Scholar

    [18]

    杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇 2017 物理学报 66 018401Google Scholar

    Yang Y G, Yin G Z, Feng S L, Li M, Ji G W, Song F, Wen W, Gao X Y 2017 Acta Phys. Sin. 66 018401Google Scholar

    [19]

    Kuai L, Li J N, Li Y, Wang Y S, Li P D, Qin Y S, Song T, Yang Y G, Chen Z Y, Gao X Y, Sun B Q 2020 ACS Energy Lett. 5 8Google Scholar

    [20]

    Wang Y, Dar M I, Luis K O, Zhang T Y, Kan M, Li Y W, Zhang L J, Wang X T, Yang Y G, Gao X Y, Qi Y B, Michael G, Zhao Y X 2019 Science 365 591Google Scholar

    [21]

    Yang Y G, Lu H Z , Feng S L, Yang L F, Dong H, Wang J O, Tian C, Li L N, Lu H L, Jeong J, Shaik M Z, Liu Y H, Michael G, Anders H 2021 Energy Environ. Sci. 6 3447Google Scholar

    [22]

    Xue J J, Wang R, Wang K L, Wang Z K, Yavuz I, Wang Y, Yang Y G, Gao X Y, Huang T Y, Nuryyeva S, Lee J W, Duan Y, Liao L S, Kaner R, Yang Y 2019 J. Am. Chem. Soc. 141 13948Google Scholar

    [23]

    Hu Q, Zhao L C, Wu J, Gao K, Luo D Y, Jiang Y F, Zhang Z Y, Zhu C H, Schaible E, Hexemer A, Wang C, Liu Y, Zhang W, Michael G, Liu F, Thomas P R, Zhu R, Gong Q H 2017 Nat. Commun. 8 15688

    [24]

    Qin M C, Tse K, Lau T, Li Y, Su C, Yang G, Chen J, Zhu J, Jeng U S, Li G, Chen H Z, Lu X H 2019 Adv. Mater. 31 1901284Google Scholar

    [25]

    Yang Y G, Yang L, Feng S L 2020 Mater. Today Adv. 6 100068Google Scholar

    [26]

    Li M, Zuo W W, Yang Y G, Aldamasy M H, Wang Q, Silver H T C, Feng S L, Michael S, Wang Z K, Antonio A 2020 ACS Energy Lett. 5 1923Google Scholar

    [27]

    Chan J H, Feng E M, Li H Y, Ding Y, Long C Y, Gao Y J, Yang Y G, Yi C Y, Zheng Z J, Yang J L 2023 Nano-Micro Lett. 15 164Google Scholar

    [28]

    McMeekin D P, Holzhey P, O Fürer S, Steven P H, Laura T S, James M B, Suhas M, Seongrok S, Nicholas H, Lu J, Michael B J, Joseph J, Udo B, Henry J S 2023 Nat. Mater. 22 73Google Scholar

    [29]

    Ye C Z, Yang J, Yao L X, Chen N Y 2001 Chin. Sci. Bull. 46 1951Google Scholar

    [30]

    王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪 2022 物理学报 71 166801Google Scholar

    Wang C L, Zhang Z L, Zhu Y F, Zhao X F, Song H W, Chen C 2022 Acta. Phys. Sin. 71 166801Google Scholar

    [31]

    Yan Y J, Yang Y G, Liang M L, Mohamed A, Tõnu P, Zheng K B, Liang Z Q 2021 Nat. Commun. 12 6603Google Scholar

    [32]

    Yu S, Meng J, Pan Q Y, Zhao Q, Tönu P, Yang Y G, Zheng K B, Liang Z Q 2022 Energy Environ. Sci. 15 3321Google Scholar

    [33]

    Yang Y G, Yang L, Feng S L, Niu Y C, Li X X, Cheng L W, Li L, Qin W, Wang T, Xu Q, Dong H, Lu H Z, Qin T S, Huang W 2023 Adv. Energy Mater. 13 2300661Google Scholar

    [34]

    Li Q, Zheng Y C, Yang S, Hou Y 2023 Chin. Sci. Bull. 68 3Google Scholar

  • [1] Zhong Ting-Ting, Hao Hui-Ying. Component control and additive engineering of all-inorganic perovskite films and carbon-based solar cells under ambient air environment. Acta Physica Sinica, 2024, 73(23): 238101. doi: 10.7498/aps.73.20241439
    [2] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [4] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [5] Chen Xu-Min, Ye Pan, Wang Ji-Guang, Huo De-Xuan, Cao Dong-Xing. Flexoelectric effect of perovskite superlattice SrTiO3/BaTiO3. Acta Physica Sinica, 2022, 71(20): 206302. doi: 10.7498/aps.71.20220988
    [6] Yang Ying-Guo, Yin Guang-Zhi, Feng Shang-Lei, Li Meng, Ji Geng-Wu, Song Fei, Wen Wen, Gao Xing-Yu. An in-situ real time study of the perovskite film micro-structural evolution in a humid environment by using synchrotron based characterization technique. Acta Physica Sinica, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [7] Li Jia, Fang Qi, Luo Bing-Chi, Zhou Min-Jie, Li Kai, Wu Wei-Dong. Residual stress analysis by grazing-incidence X-ray diffraction on beryllium films. Acta Physica Sinica, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [8] Li Yan-Bo, Liu Xi, Li Zheng-Hua, Fu Yu, Kamzin A. S., Wei Fu-Lin, Yang Zheng. Effect of interface on microstructure and soft magnetic properties of Fe65Co35 thin films. Acta Physica Sinica, 2009, 58(11): 7972-7976. doi: 10.7498/aps.58.7972
    [9] Li Qian, Wang Zhi-Guo, Liu Su, Xing Zhong-Wen, Liu Mei. Theoretical study on electric-pulse-induced resistance change in perovskite Pr1-xCaxMnO3 films. Acta Physica Sinica, 2007, 56(3): 1637-1642. doi: 10.7498/aps.56.1637
    [10] Pan Zhi-Yun, Sun Zhi-Hu, Xie Zhi, Yan Wen-Sheng, Wei Shi-Qiang. Local structures of Si/Gen/Si(001) hetero-structure films studied by grazing incidence fluorescence X-ray absorption fine structure. Acta Physica Sinica, 2007, 56(6): 3344-3349. doi: 10.7498/aps.56.3344
    [11] Yan Zi-Jie, Yuan Xiao, Xu Ye-Bin, Gao Guo-Mian, Chen Chang-Le. Transient photoresponse in Pr0.7Ca0.3MnO3 thin films at room temperature. Acta Physica Sinica, 2007, 56(10): 6080-6083. doi: 10.7498/aps.56.6080
    [12] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Gu Jin-Hua, Zhou Yu-Qin, Liu Jin-Long, Dong Bao-Zhong, Li Guo-Hua, Ding Kun. The microstructure of hydrogenated microcrystalline silicon thin films studied by small-angle x-ray scattering. Acta Physica Sinica, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [13] Zhao Hui, Du Zhi-Wei, Zhou Tie-Tao, Liu Pei-Ying, Dong Bao-Zhong, Chen Chang-Qi. Small angle x-ray scattering study on microstructure evolution of the aging process of Al-Zn-Mg-Cu-Li alloy. Acta Physica Sinica, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [14] Wang Shi-Lin, Chen Chang-Le, Wang Yue-Long, Jin Ke-Xin, Wang Yong-Cang, Ren Ren, Song Zhou-Mo, Yuan Xiao. The change of photo-induced resistivity properties in La2/3Ca1/3MnO3 thin films. Acta Physica Sinica, 2004, 53(2): 587-591. doi: 10.7498/aps.53.587
    [15] Li Zhi-Qiang, Lu Xia-Lian, Chen Min, He Shan, Li Jing-De. . Acta Physica Sinica, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
    [16] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
    [17] YANG PING-XIONG, DENG HONG-MEI, CHU JUN-HAO. DOPING CHARACTERIZATION STUDIES OF LAYERED PEROVSKITE SrBi2Ta2O9 FERROELECTRIC THIN FILMS. Acta Physica Sinica, 1998, 47(7): 1222-1228. doi: 10.7498/aps.47.1222
    [18] SUN KE-XU, YI RONG-QING, YANG JIA-MIN, WANG HONG-BIN, MA HONG-LIANG, CHEN ZHENG-LIN, HUANG TIAN-XUAN, CUI YAN-LI, ZHENG ZHI-JIAN, TANG DAO-YUAN, DING YONG-KUN, WEN SHU-HUAI, JIANG WEN-MIAN, ZHAO YONG-KUAN, CUI MING-QI, LI GANG, CUI CONG-WU, TANG E-SHENG. CALIBRASION OF THE ENERGY RESPONSE FOR THE SOFT X-RAY DETECTIONS ELEMENTS WITH THE BEIJING- SYNCHROTRON RADIATION FACILITY. Acta Physica Sinica, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [19] BAI HAI-LI, JIANG EN-YONG, WANG CUN-DA, TIAN REN-YU. ENHANCEMENT OF THE REFLECTIVITY OF Co/C SOFT X-RAY MULTILAYERS AT GRAZING INCIDENCE BY THERMAL TREATMENT. Acta Physica Sinica, 1997, 46(4): 732-739. doi: 10.7498/aps.46.732
    [20] WANG YU-TIAN, ZHUANG YAN, JIANG DE-SHENG, YANG XIAO-PING, JIANG XIAO-MING, WU JIA-YANG, XIU LI-SONG, ZHENG WEN-LI. STUDY OF DOUBLE-BARRIER SUPERLATTICE BY SYNCHROTRON RADIATION AND DOUBLE-CRYSTAL X-RAY DIFFRACTION. Acta Physica Sinica, 1996, 45(10): 1709-1716. doi: 10.7498/aps.45.1709
Metrics
  • Abstract views:  2631
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2023
  • Accepted Date:  20 December 2023
  • Available Online:  02 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回