Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer

Qu Zi-Han Zhao Yang Ma Fei You Jing-Bi

Citation:

Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer

Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi
PDF
HTML
Get Citation
  • Perovskite solar cells have been widely recognized as the most promising new-type photovoltaic device due to its power conversion efficiency rapidly increasing from 3.8% to over 26% in merely fifteen years. However, the high performances are achieved mainly on small area cells with an active area lower than 0.1 cm2. When enlarging the active area of perovskite solar cells, the efficiency falls dramatically. So, how to reduce the gap between performances of small area cells and large area cells gradually becomes a critical point in the path towards the commercialization of perovskite photovoltaic technology. Herein, a strategy of pre-growing thin layer of TiO2 on a rough FTO substrate by atomic layer deposition method before spin-coating SnO2 nanoparticles is proposed. Due to the inherent conformal film growth mode of atomic layer deposition, the FTO substrate can be completely covered by TiO2, thus preventing the direct contact between local protrusions of FTO and perovskite layer and impeding the current leakage phenomenon, which can be verified by the measurements from X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy, and further proved by the dark current measurement. By using this method, the repeatability and consistency of the small area cell fabrication technology on the same substrate are improved obviously. The improved electron transport process revealed by photoluminescence results and incident light management process revealed by external quantum efficiency results also brings about better solar cell performances. More importantly, highly efficient 0.5 cm2 large area perovskite solar cells are fabricated through optimization of TiO2 thickness. When growing 200 cycles TiO2 (~9 nm in thickness) by using atomic layer deposition technology, the champion large area perovskite solar cell possesses a power conversion efficiency as high as 24.8% (certified 24.65%). The device performances also show excellent repeatability between different fabrication batches. The perovskite solar cell with TiO2 buffer layer grown by the atomic layer deposition method can still retain over 95% of its initial efficiency after having been stored in a nitrogen atmosphere for 1500 h. The technique proposed in this paper can be helpful in manufacturing perovskite solar cell modules in the realistic photovoltaic market and can be extended to the large area fabrication of other perovskite optoelectronic devices such as light emitting diode, laser and detector.
      Corresponding author: You Jing-Bi, jyou@semi.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFB1506400).
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [4]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [5]

    Zhao Y, Ma F, Qu Z H, Yu S Q, Shen T, Deng H X, Chu X B, Peng X X, Yuan Y B, Zhang X W, You J B 2022 Science 377 531Google Scholar

    [6]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [7]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html [2024-2-1]

    [8]

    Lin H, Yang M, Ru X N, et al. 2023 Nat. Energy 8 789Google Scholar

    [9]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [10]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [11]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [12]

    Cheng Y, Peng Y, Jen A K Y, Yip H L 2021 Sol. RRL 6 2100545Google Scholar

    [13]

    Kim G H, Kim D S 2021 Joule 5 1033Google Scholar

    [14]

    Plutnar J, Pumera M 2021 Small 17 2102088Google Scholar

    [15]

    Ahvenniemi E, Akbashev A R, Ali S, et al. 2017 J. Vac. Sci. Technol. A 35 010801Google Scholar

    [16]

    Cho Y J, Jeong M J, Park J H, Hu W, Lim J, Chang H S 2021 Energies 14 1156Google Scholar

    [17]

    Correa Baena J P, Steier L, Tress W, et al. 2015 Energy Environ. Sci. 8 2928Google Scholar

    [18]

    Li C, Xu H, Zhi C, Wan Z, Li Z 2022 Chin. Phys. B 31 111004Google Scholar

    [19]

    Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302Google Scholar

    [20]

    You Y, Tian W, Min L, Cao F, Deng K, Li L 2019 Adv. Mater. Interfaces 7 1901406Google Scholar

    [21]

    Jiang Q, Zhang L Q, Wang H L, et al. 2017 Nat. Energy 2 16177Google Scholar

    [22]

    Lin R X, Wang Y R, Lu Q W, et al. 2023 Nature 620 994Google Scholar

    [23]

    周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [24]

    Peng J, Walter D, Ren Y H, et al. 2021 Science 371 390Google Scholar

    [25]

    Chiappim W, Testoni G E, Moraes R S, et al. 2016 Vacuum 123 91Google Scholar

    [26]

    Sadollahkhani A, Liu P, Leandri V, Safdari M, Zhang W, Gardner J M 2017 Chemphyschem 18 3047Google Scholar

    [27]

    Chu S L, Zhang Y H, Xiao P, et al. 2022 Adv. Mater. 34 2108939Google Scholar

    [28]

    Zhao J J, Zhao L, Deng Y H, Xiao X, Ni Z Y, Xu S, Huang J S 2020 Nat. Photonics 14 612Google Scholar

  • 图 1  FTO衬底上有无ALD生长TiO2样品的XPS结果, 其中(a) 扫描全谱, (b) Ti的2p轨道, (c) Sn的3d轨道; 样品表面SEM结果, 其中 (d) FTO衬底, (e) FTO/TiO2, (f) FTO/TiO2/SnO2

    Figure 1.  XPS results of FTO substrate with and without ALD grown TiO2: (a) Full spectrum; (b) Ti 2p orbit; (c) Sn 3d orbit. Surface SEM results: (d) FTO substrate; (e) FTO/TiO2; (f) FTO/TiO2/SnO2

    图 2  三种条件样品的(a)—(c)截面SEM结果和(d)—(f)表面AFM结果 (a), (d) FTO衬底; (b), (e) FTO/TiO2; (c), (f) FTO/TiO2/SnO2

    Figure 2.  (a)–(c) Cross-section SEM results and (d)–(f) surface AFM results for (a), (d) FTO substrate; (b), (e) FTO/TiO2; (c), (f) FTO/TiO2/SnO2

    图 3  单独SnO2上和TiO2/SnO2上生长钙钛矿的光致发光测试结果 (a) 稳态荧光; (b) 时间分辨荧光

    Figure 3.  Photoluminescence results for perovskite grown on SnO2 or TiO2/SnO2: (a) Steady state photoluminescence; (b) time-resolved photoluminescence.

    图 4  有无TiO2层的小面积钙钛矿太阳电池测试结果 (a) 快速单次J-V扫描曲线; (b) 慢速正向和反向扫描J-V曲线; (c) 外量子效率随波长变化和积分电流密度随波长累加曲线; (d) 暗态电流-电压曲线

    Figure 4.  Measurement results of small area perovskite solar cells with or without TiO2 layer: (a) Single J-V sweep curve under fast scan mode; (b) reverse and forward J-V sweep curves under slow scan mode; (c) EQE and accumulated integrated current density versus wavelength curves; (d) current-voltage curves under dark environment.

    图 5  0.5 cm2大面积钙钛矿太阳电池测试结果 (a) 不同TiO2厚度电池性能对比; (b) 电池制备工艺重复性; (c) 冠军电池快速单次J-V扫描曲线(内插图为第三方认证结果); (d) 冠军电池慢速正向和反向扫描J-V曲线

    Figure 5.  Measurement results for 0.5 cm2 large area perovskite solar cells: (a) Solar cell performances comparison of different TiO2 thicknesses; (b) repeatability of solar cell fabrication technology; (c) single J-V sweep curve under fast scan mode for champion cell (inset graph: certified result); (d) reverse and forward J-V sweep curves under slow scan mode for champion cell.

    图 6  有无TiO2层的钙钛矿太阳电池在氮气氛围中长期放置稳定性

    Figure 6.  Long term storage stability under nitrogen atmosphere of perovskite solar cells with or without TiO2 layer.

    表 1  有无ALD生长的金属氧化物缓冲层制备的整块器件分割出的子电池效率

    Table 1.  Power conversion efficiency of the sub-cells from the whole device with or without ALD grown metal oxide buffer layer.

    电子传输层F1-PCE /%F2-PCE
    /%
    F3-PCE
    /%
    F4-PCE
    /%
    旋涂SnO225.4024.9525.768.72
    ALD SnO2/旋涂SnO224.2725.7425.1625.29
    ALD TiO2/旋涂SnO225.9226.4626.2125.92
    DownLoad: CSV

    表 2  有无ALD生长的TiO2整块器件上性能最佳子电池的各项参数

    Table 2.  Performance parameters of the best sub-cell on the whole device with or without ALD grown TiO2.

    电子传输层 VOC/V JSC/(mA·cm–2) FF/% PCE/% Reverse PCE, forward PCE/%
    SnO2 1.17 26.00 84.65 25.76 25.25/24.87
    TiO2/SnO2 1.18 26.30 85.19 26.46 25.99/25.81
    DownLoad: CSV

    表 3  不同TiO2生长循环数制备的大面积钙钛矿太阳电池性能参数

    Table 3.  Performance parameters of large area perovskite solar cells fabricated based on TiO2 grown by different cycles.

    TiO2生长循
    环数/cycle
    VOC/VJSC/(mA·cm–2)FF/%PCE/%
    01.1724.4474.3621.33
    1001.1725.3976.1122.65
    2001.1825.4579.8624.07
    4001.1725.3961.5718.23
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [4]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [5]

    Zhao Y, Ma F, Qu Z H, Yu S Q, Shen T, Deng H X, Chu X B, Peng X X, Yuan Y B, Zhang X W, You J B 2022 Science 377 531Google Scholar

    [6]

    Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [7]

    https://www.nrel.gov/pv/interactive-cell-efficiency.html [2024-2-1]

    [8]

    Lin H, Yang M, Ru X N, et al. 2023 Nat. Energy 8 789Google Scholar

    [9]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [10]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [11]

    Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [12]

    Cheng Y, Peng Y, Jen A K Y, Yip H L 2021 Sol. RRL 6 2100545Google Scholar

    [13]

    Kim G H, Kim D S 2021 Joule 5 1033Google Scholar

    [14]

    Plutnar J, Pumera M 2021 Small 17 2102088Google Scholar

    [15]

    Ahvenniemi E, Akbashev A R, Ali S, et al. 2017 J. Vac. Sci. Technol. A 35 010801Google Scholar

    [16]

    Cho Y J, Jeong M J, Park J H, Hu W, Lim J, Chang H S 2021 Energies 14 1156Google Scholar

    [17]

    Correa Baena J P, Steier L, Tress W, et al. 2015 Energy Environ. Sci. 8 2928Google Scholar

    [18]

    Li C, Xu H, Zhi C, Wan Z, Li Z 2022 Chin. Phys. B 31 111004Google Scholar

    [19]

    Kim M, Jeong J, Lu H Z, et al. 2022 Science 375 302Google Scholar

    [20]

    You Y, Tian W, Min L, Cao F, Deng K, Li L 2019 Adv. Mater. Interfaces 7 1901406Google Scholar

    [21]

    Jiang Q, Zhang L Q, Wang H L, et al. 2017 Nat. Energy 2 16177Google Scholar

    [22]

    Lin R X, Wang Y R, Lu Q W, et al. 2023 Nature 620 994Google Scholar

    [23]

    周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥 2022 物理学报 71 208802Google Scholar

    Zhou Y, Ren X G, Yan Y Q, Ren H, Du H M, Cai X Y, Huang Z X 2022 Acta Phys. Sin. 71 208802Google Scholar

    [24]

    Peng J, Walter D, Ren Y H, et al. 2021 Science 371 390Google Scholar

    [25]

    Chiappim W, Testoni G E, Moraes R S, et al. 2016 Vacuum 123 91Google Scholar

    [26]

    Sadollahkhani A, Liu P, Leandri V, Safdari M, Zhang W, Gardner J M 2017 Chemphyschem 18 3047Google Scholar

    [27]

    Chu S L, Zhang Y H, Xiao P, et al. 2022 Adv. Mater. 34 2108939Google Scholar

    [28]

    Zhao J J, Zhao L, Deng Y H, Xiao X, Ni Z Y, Xu S, Huang J S 2020 Nat. Photonics 14 612Google Scholar

  • [1] Qiu Peng, Liu Heng, Zhu Xiao-Li, Tian Feng, Du Meng-Chao, Qiu Hong-Yu, Chen Guan-Liang, Hu Yu-Yu, Kong De-Lin, Yang Jin, Wei Hui-Yun, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition and application of group III nitrides semiconductor and their alloys. Acta Physica Sinica, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [3] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [4] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [5] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties. Acta Physica Sinica, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [6] Lu Hui-Dong, Han Hong-Jing, Liu Jie. Structure optimization and optoelectronical property calculation for organic lead iodine perovskite solar cells. Acta Physica Sinica, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [7] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [8] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He. Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [9] Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu. Research progress of light irradiation stability of functional layers in perovskite solar cells. Acta Physica Sinica, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [10] Liang Xiao-Juan, Cao Yu, Cai Hong-Kun, Su Jian, Ni Jian, Li Juan, Zhang Jian-Jun. Simulation and architectural design for Schottky structure perovskite solar cells. Acta Physica Sinica, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [11] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [12] Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Shao-Hua, Pan Ling, Li Wen-Biao, Yang Shi-E, Chen Yong-Sheng. Influence of annealing temperature on properties of Cu2O thin films deposited by electron beam evaporation. Acta Physica Sinica, 2018, 67(5): 053301. doi: 10.7498/aps.67.20172463
    [13] Li Shao-Hua, Li Hai-Tao, Jiang Ya-Xiao, Tu Li-Min, Li Wen-Biao, Pan Ling, Yang Shi-E, Chen Yong-Sheng. Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [14] Wang Jun-Xia, Bi Zhuo-Neng, Liang Zhu-Rong, Xu Xue-Qing. Progress of new carbon material research in perovskite solar cells. Acta Physica Sinica, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [15] Wang Fu-Zhi, Tan Zhan-Ao, Dai Song-Yuan, Li Yong-Fang. Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [16] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [17] Zhang Xiang, Liu Bang-Wu, Xia Yang, Li Chao-Bo, Liu Jie, Shen Ze-Nan. The passivation of Al2O3 and its applications in the crystalline silicon solar cell. Acta Physica Sinica, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [18] Wu Bao-Shan, Wang Lin-Lin, Wang Yong-Mei, Ma Ting-Li. Study of influencing factors for performance of large-scale dye-sensitized solar cells based on the semi-empirical model. Acta Physica Sinica, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [19] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [20] Oyangxiaoping, Li Zhen-Fu, Zhang Guo-Guang, Huo Yu-Kun, Zhang Qian-Mei, Zhang Xian-Peng, Song Xian-Cai, Jia Huan-Yi, Lei Jian-Hua, Sun Yuan-Cheng. . Acta Physica Sinica, 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
Metrics
  • Abstract views:  455
  • PDF Downloads:  33
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2024
  • Accepted Date:  15 March 2024
  • Available Online:  19 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回