-
Based on the excellent optoelectronic properties of organic-inorganic hybrids perovskite materials, the power conversion efficiency of perovskite solar cells (PSCs) is rapidly increasing. However, factors that restrict the performance of PSCs still exist, such as interface and stability problems. Problems, such as band mismatching, carrier recombination and chemical reaction between interfaces, could be alleviated by introducing a buffer layer (BL) with a proper band structure between different layers. Moreover, stability as well as charge separation and collection could also be efficiently improved in PSCs. In this paper, an overview of the most contemporary strategies of BLs was provided. The passivation mechanism of BLs at different interfaces are highlighted and discussed in detail. Furthermore, the performances of recently developed BLs in PSCs are compared. Finally, we elaborate on the remaining challenges and future directions for the development of BLs to achieve high-efficiency and high-stability PSCs.
-
Keywords:
- perovskite solar cell /
- interface /
- stability /
- buffer layer
[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[2] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar
[3] Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar
[4] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar
[5] Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[7] Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[9] Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png
[10] Qiu J H, Yang S H 2019 Chem. Rec. 20 209
[11] Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar
[12] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[13] Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar
[14] C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar
[15] Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar
[16] Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar
[17] Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar
[18] Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar
[19] Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar
[20] Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar
[21] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar
[22] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar
[23] Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar
[24] Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar
[25] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar
[26] L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar
[27] Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar
[28] Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar
[29] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar
[30] Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar
[31] Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar
[32] Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar
[33] Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar
[34] Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar
[35] Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar
[36] Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar
[37] Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar
[38] Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar
[39] Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar
[40] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar
[41] Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280
[42] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar
[43] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar
[44] Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar
[45] Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar
-
图 6 Perovskite/PCBM和Perovskite/PCBM/Zr(Ac)4薄膜的AFM图及其表面I、N、Pb元素含量的XPS图谱; 有无Zr(Ac)4缓冲层钙钛矿太阳电池的最优电池J-V图[30] (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS图谱; (d) J-V图
Figure 6. AFM diagram of Perovskite/PCBM and Perovskite/PCBM/Zr(Ac)4 films and XPS spectra showing the different amount of I, N and Pb elements on the films surface; the J-V characteristics of the optimized device perovskite solar cell with and without Zr(Ac)4 buffer layer[30]: (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS spectra; (d) J-V diagram.
图 7 ITO/SnO2/perovskite与ITO/PEI/SnO2/perovskite的AFM图、PL图及有无PEI缓冲层最优电池的入射光子-电流转换效率图(IPCE)[20] (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL图; (d) IPCE图
Figure 7. The AFM images and the steady state PL spectra of ITO/PEI/SnO2/perovskite and ITO/SnO2/perovskite, and the IPCE spectra of the champion devices with and without PEI buffer layer[20]: (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL spectra; (d) IPCE spectra.
-
[1] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[2] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar
[3] Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar
[4] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar
[5] Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar
[6] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[7] Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar
[8] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[9] Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png
[10] Qiu J H, Yang S H 2019 Chem. Rec. 20 209
[11] Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar
[12] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[13] Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar
[14] C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar
[15] Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar
[16] Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar
[17] Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar
[18] Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar
[19] Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar
[20] Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar
[21] Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar
[22] Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar
[23] Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar
[24] Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar
[25] Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar
[26] L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar
[27] Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar
[28] Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar
[29] Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar
[30] Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar
[31] Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar
[32] Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar
[33] Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar
[34] Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar
[35] Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar
[36] Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar
[37] Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar
[38] Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar
[39] Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar
[40] Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar
[41] Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280
[42] Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar
[43] Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar
[44] Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar
[45] Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar
Catalog
Metrics
- Abstract views: 23155
- PDF Downloads: 1035
- Cited By: 0